Cargando…

Preliminary Assessment of Burn Depth by Paper-Based ELISA for the Detection of Angiogenin in Burn Blister Fluid—A Proof of Concept

Rapid assessment of burn depth is important for burn wound management. Superficial partial-thickness burn (SPTB) wounds heal without scars, but deep partial-thickness burn (DPTB) wounds require a longer healing time and have a higher risk of scar formation. We previously found that DPTB blister flui...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Shin-Chen, Tsai, Yao-Hung, Chuang, Chin-Chuan, Cheng, Chao-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151184/
https://www.ncbi.nlm.nih.gov/pubmed/32120826
http://dx.doi.org/10.3390/diagnostics10030127
Descripción
Sumario:Rapid assessment of burn depth is important for burn wound management. Superficial partial-thickness burn (SPTB) wounds heal without scars, but deep partial-thickness burn (DPTB) wounds require a longer healing time and have a higher risk of scar formation. We previously found that DPTB blister fluid displayed a higher angiogenin level than SPTB blister fluid by conventional ELISA. In this study, we developed a paper-based ELISA (P-ELISA) technique for rapid assessment of angiogenin concentration in burn blister fluid. We collected six samples of SPTB blister fluid, six samples of DPTB blister fluid, and seven normal healthy serum samples for analysis. We again chose ELISA to measure and compare angiogenin levels across all of our samples, but we developed a P-ELISA tool and compared sample results from that tool to the results from conventional ELISA. As with conventional ELISA, DPTB blister fluid displayed higher angiogenin levels than SPTB in P-ELISA. Furthermore, our P-ELISA results showed a moderate correlation with conventional ELISA results. This new diagnostic technique facilitates rapid and convenient assessment of burn depth by evaluating a key molecule in burn blister fluid. It presents a novel and easy-to-learn approach that may be suitable for clinically determining burn depth with diagnostic precision.