Cargando…

Game of Tissues: How the Epidermis Thrones C. elegans Shape

The versatility of epithelial cell structure is universally exploited by organisms in multiple contexts. Epithelial cells can establish diverse polarized axes within their tridimensional structure which enables them to flexibly communicate with their neighbors in a 360° range. Hence, these cells are...

Descripción completa

Detalles Bibliográficos
Autores principales: Carvalho, Cátia A., Broday, Limor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151205/
https://www.ncbi.nlm.nih.gov/pubmed/32182901
http://dx.doi.org/10.3390/jdb8010007
Descripción
Sumario:The versatility of epithelial cell structure is universally exploited by organisms in multiple contexts. Epithelial cells can establish diverse polarized axes within their tridimensional structure which enables them to flexibly communicate with their neighbors in a 360° range. Hence, these cells are central to multicellularity, and participate in diverse biological processes such as organismal development, growth or immune response and their misfunction ultimately impacts disease. During the development of an organism, the first task epidermal cells must complete is the formation of a continuous sheet, which initiates its own morphogenic process. In this review, we will focus on the C. elegans embryonic epithelial morphogenesis. We will describe how its formation, maturation, and spatial arrangements set the final shape of the nematode C. elegans. Special importance will be given to the tissue-tissue interactions, regulatory tissue-tissue feedback mechanisms and the players orchestrating the process.