Cargando…
Elucidating the Structure-Function Relationship of Solvent and Cross-Linker on Affinity-Based Release from Cyclodextrin Hydrogels
Minocycline (MNC) is a tetracycline antibiotic capable of associating with cyclodextrin (CD), and it is a frontline drug for many instances of implant infection. Due to its broad-spectrum activity and long half-life, MNC represents an ideal drug for localized delivery; however, classic polymer formu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151216/ https://www.ncbi.nlm.nih.gov/pubmed/32235748 http://dx.doi.org/10.3390/gels6010009 |
_version_ | 1783521198974435328 |
---|---|
author | Zuckerman, Sean T. Rivera-Delgado, Edgardo Haley, Rebecca M. Korley, Julius N. von Recum, Horst A. |
author_facet | Zuckerman, Sean T. Rivera-Delgado, Edgardo Haley, Rebecca M. Korley, Julius N. von Recum, Horst A. |
author_sort | Zuckerman, Sean T. |
collection | PubMed |
description | Minocycline (MNC) is a tetracycline antibiotic capable of associating with cyclodextrin (CD), and it is a frontline drug for many instances of implant infection. Due to its broad-spectrum activity and long half-life, MNC represents an ideal drug for localized delivery; however, classic polymer formulations, particularly hydrogels, result in biphasic release less suitable for sustained anti-microbial action. A polymer delivery system capable of sustained, steady drug delivery rates poses an attractive target to maximize the antimicrobial activity of MNC. Here, we formed insoluble hydrogels of polymerized CD (pCD) with a range of crosslinking densities, and then assessed loading, release, and antimicrobial activity of MNC. MNC loads between 5–12 wt % and releases from pCD hydrogels for >14 days. pCD loaded with MNC shows extended antimicrobial activity against S. aureus for >40 days and E. coli for >70 days. We evaluated a range of water/ethanol blends to test our hypothesis that solvent polarity will impact drug-CD association as a function of hydrogel swelling and crosslinking. Increased polymer crosslinking and decreased solvent polarity both reduced MNC loading, but solvent polarity showed a dramatic reduction independent of hydrogel swelling. Due to its high solubility and excellent delivery profile, MNC represents a unique drug to probe the structure-function relationship between drug, affinity group, and polymer crosslinking ratio. |
format | Online Article Text |
id | pubmed-7151216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71512162020-04-20 Elucidating the Structure-Function Relationship of Solvent and Cross-Linker on Affinity-Based Release from Cyclodextrin Hydrogels Zuckerman, Sean T. Rivera-Delgado, Edgardo Haley, Rebecca M. Korley, Julius N. von Recum, Horst A. Gels Article Minocycline (MNC) is a tetracycline antibiotic capable of associating with cyclodextrin (CD), and it is a frontline drug for many instances of implant infection. Due to its broad-spectrum activity and long half-life, MNC represents an ideal drug for localized delivery; however, classic polymer formulations, particularly hydrogels, result in biphasic release less suitable for sustained anti-microbial action. A polymer delivery system capable of sustained, steady drug delivery rates poses an attractive target to maximize the antimicrobial activity of MNC. Here, we formed insoluble hydrogels of polymerized CD (pCD) with a range of crosslinking densities, and then assessed loading, release, and antimicrobial activity of MNC. MNC loads between 5–12 wt % and releases from pCD hydrogels for >14 days. pCD loaded with MNC shows extended antimicrobial activity against S. aureus for >40 days and E. coli for >70 days. We evaluated a range of water/ethanol blends to test our hypothesis that solvent polarity will impact drug-CD association as a function of hydrogel swelling and crosslinking. Increased polymer crosslinking and decreased solvent polarity both reduced MNC loading, but solvent polarity showed a dramatic reduction independent of hydrogel swelling. Due to its high solubility and excellent delivery profile, MNC represents a unique drug to probe the structure-function relationship between drug, affinity group, and polymer crosslinking ratio. MDPI 2020-03-22 /pmc/articles/PMC7151216/ /pubmed/32235748 http://dx.doi.org/10.3390/gels6010009 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zuckerman, Sean T. Rivera-Delgado, Edgardo Haley, Rebecca M. Korley, Julius N. von Recum, Horst A. Elucidating the Structure-Function Relationship of Solvent and Cross-Linker on Affinity-Based Release from Cyclodextrin Hydrogels |
title | Elucidating the Structure-Function Relationship of Solvent and Cross-Linker on Affinity-Based Release from Cyclodextrin Hydrogels |
title_full | Elucidating the Structure-Function Relationship of Solvent and Cross-Linker on Affinity-Based Release from Cyclodextrin Hydrogels |
title_fullStr | Elucidating the Structure-Function Relationship of Solvent and Cross-Linker on Affinity-Based Release from Cyclodextrin Hydrogels |
title_full_unstemmed | Elucidating the Structure-Function Relationship of Solvent and Cross-Linker on Affinity-Based Release from Cyclodextrin Hydrogels |
title_short | Elucidating the Structure-Function Relationship of Solvent and Cross-Linker on Affinity-Based Release from Cyclodextrin Hydrogels |
title_sort | elucidating the structure-function relationship of solvent and cross-linker on affinity-based release from cyclodextrin hydrogels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151216/ https://www.ncbi.nlm.nih.gov/pubmed/32235748 http://dx.doi.org/10.3390/gels6010009 |
work_keys_str_mv | AT zuckermanseant elucidatingthestructurefunctionrelationshipofsolventandcrosslinkeronaffinitybasedreleasefromcyclodextrinhydrogels AT riveradelgadoedgardo elucidatingthestructurefunctionrelationshipofsolventandcrosslinkeronaffinitybasedreleasefromcyclodextrinhydrogels AT haleyrebeccam elucidatingthestructurefunctionrelationshipofsolventandcrosslinkeronaffinitybasedreleasefromcyclodextrinhydrogels AT korleyjuliusn elucidatingthestructurefunctionrelationshipofsolventandcrosslinkeronaffinitybasedreleasefromcyclodextrinhydrogels AT vonrecumhorsta elucidatingthestructurefunctionrelationshipofsolventandcrosslinkeronaffinitybasedreleasefromcyclodextrinhydrogels |