Cargando…
Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters
Microparticles (MPs) with controlled morphologies and sizes have been investigated by several researchers due to their importance in pharmaceutical, ceramic, cosmetic, and food industries to just name a few. In particular, the electrospray (ES) technique has been shown to be a viable alternative for...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151563/ https://www.ncbi.nlm.nih.gov/pubmed/31952157 http://dx.doi.org/10.3390/jfb11010004 |
_version_ | 1783521279549112320 |
---|---|
author | Morais, Alan Í. S. Vieira, Ewerton G. Afewerki, Samson Sousa, Ricardo B. Honorio, Luzia M. C. Cambrussi, Anallyne N. C. O. Santos, Jailson A. Bezerra, Roosevelt D. S. Furtini, Josy A. O. Silva-Filho, Edson C. Webster, Thomas J. Lobo, Anderson O. |
author_facet | Morais, Alan Í. S. Vieira, Ewerton G. Afewerki, Samson Sousa, Ricardo B. Honorio, Luzia M. C. Cambrussi, Anallyne N. C. O. Santos, Jailson A. Bezerra, Roosevelt D. S. Furtini, Josy A. O. Silva-Filho, Edson C. Webster, Thomas J. Lobo, Anderson O. |
author_sort | Morais, Alan Í. S. |
collection | PubMed |
description | Microparticles (MPs) with controlled morphologies and sizes have been investigated by several researchers due to their importance in pharmaceutical, ceramic, cosmetic, and food industries to just name a few. In particular, the electrospray (ES) technique has been shown to be a viable alternative for the development of single particles with different dimensions, multiple layers, and varied morphologies. In order to adjust these properties, it is necessary to optimize different experimental parameters, such as polymer solvent, voltage, flow rate (FR), type of collectors, and distance between the collector and needle tip, which will all be highlighted in this review. Moreover, the influence and contributions of each of these parameters on the design and fabrication of polymeric MPs are described. In addition, the most common configurations of ES systems for this purpose are discussed, for instance, the main configuration of an ES system with monoaxial, coaxial, triaxial, and multi-capillary delivery. Finally, the main types of collectors employed, types of synthesized MPs and their applications specifically in the pharmaceutical and biomedical fields will be emphasized. To date, ES is a promising and versatile technology with numerous excellent applications in the pharmaceutical and biomaterials field and such MPs generated should be employed for the improved treatment of cancer, healing of bone, and other persistent medical problems. |
format | Online Article Text |
id | pubmed-7151563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71515632020-04-20 Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters Morais, Alan Í. S. Vieira, Ewerton G. Afewerki, Samson Sousa, Ricardo B. Honorio, Luzia M. C. Cambrussi, Anallyne N. C. O. Santos, Jailson A. Bezerra, Roosevelt D. S. Furtini, Josy A. O. Silva-Filho, Edson C. Webster, Thomas J. Lobo, Anderson O. J Funct Biomater Review Microparticles (MPs) with controlled morphologies and sizes have been investigated by several researchers due to their importance in pharmaceutical, ceramic, cosmetic, and food industries to just name a few. In particular, the electrospray (ES) technique has been shown to be a viable alternative for the development of single particles with different dimensions, multiple layers, and varied morphologies. In order to adjust these properties, it is necessary to optimize different experimental parameters, such as polymer solvent, voltage, flow rate (FR), type of collectors, and distance between the collector and needle tip, which will all be highlighted in this review. Moreover, the influence and contributions of each of these parameters on the design and fabrication of polymeric MPs are described. In addition, the most common configurations of ES systems for this purpose are discussed, for instance, the main configuration of an ES system with monoaxial, coaxial, triaxial, and multi-capillary delivery. Finally, the main types of collectors employed, types of synthesized MPs and their applications specifically in the pharmaceutical and biomedical fields will be emphasized. To date, ES is a promising and versatile technology with numerous excellent applications in the pharmaceutical and biomaterials field and such MPs generated should be employed for the improved treatment of cancer, healing of bone, and other persistent medical problems. MDPI 2020-01-15 /pmc/articles/PMC7151563/ /pubmed/31952157 http://dx.doi.org/10.3390/jfb11010004 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Morais, Alan Í. S. Vieira, Ewerton G. Afewerki, Samson Sousa, Ricardo B. Honorio, Luzia M. C. Cambrussi, Anallyne N. C. O. Santos, Jailson A. Bezerra, Roosevelt D. S. Furtini, Josy A. O. Silva-Filho, Edson C. Webster, Thomas J. Lobo, Anderson O. Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters |
title | Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters |
title_full | Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters |
title_fullStr | Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters |
title_full_unstemmed | Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters |
title_short | Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters |
title_sort | fabrication of polymeric microparticles by electrospray: the impact of experimental parameters |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151563/ https://www.ncbi.nlm.nih.gov/pubmed/31952157 http://dx.doi.org/10.3390/jfb11010004 |
work_keys_str_mv | AT moraisalanis fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters AT vieiraewertong fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters AT afewerkisamson fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters AT sousaricardob fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters AT honorioluziamc fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters AT cambrussianallynenco fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters AT santosjailsona fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters AT bezerrarooseveltds fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters AT furtinijosyao fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters AT silvafilhoedsonc fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters AT websterthomasj fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters AT loboandersono fabricationofpolymericmicroparticlesbyelectrospraytheimpactofexperimentalparameters |