Cargando…

Implementation and Validation of the Roche Light Cycler 480 96-Well Plate Platform as a Real-Time PCR Assay for the Quantitative Detection of Cytomegalovirus (CMV) in Clinical Specimens Using the Luminex MultiCode ASRs System

Allogenic stem-cell therapies benefit patients in the treatment of multiple diseases; however, the side effects of stem-cell therapies (SCT) derived from the concomitant use of immune suppression agents often include triggering infection diseases. Thus, analysis is required to improve the detection...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shengwen Calvin, Sparks, Kara J., Sender, Leonard S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151591/
https://www.ncbi.nlm.nih.gov/pubmed/32168800
http://dx.doi.org/10.3390/medsci8010014
_version_ 1783521286091177984
author Li, Shengwen Calvin
Sparks, Kara J.
Sender, Leonard S.
author_facet Li, Shengwen Calvin
Sparks, Kara J.
Sender, Leonard S.
author_sort Li, Shengwen Calvin
collection PubMed
description Allogenic stem-cell therapies benefit patients in the treatment of multiple diseases; however, the side effects of stem-cell therapies (SCT) derived from the concomitant use of immune suppression agents often include triggering infection diseases. Thus, analysis is required to improve the detection of pathogen infections in SCT. We develop a polymerase chain reaction (PCR)-based methodology for the qualitative real-time DNA detection of cytomegalovirus (CMV), with reference to herpes simplex virus types 1 (HSVI), Epstein–Barr virus (EBV), and varicella-zoster virus (VZV) in blood, urine, solid tissues, and cerebrospinal fluid. This real-time PCR of 96-well plate format provides a rapid framework as required by the Food and Drug Administration (FDA) for clinical settings, including the processing of specimens, reagent handling, special safety precautions, quality control criteria and analytical accuracy, precisely reportable range (analyst measurement range), reference range, limit of detection (LOD), analytical specificity established by interference study, and analyte stability. Specifically, we determined the reportable range (analyst measurement range) with the following criteria: CMV copies ≥200 copies/mL; report copy/mL value; CMV copies ≤199 copies/mL; report detected but below quantitative range; CMV copies = 0 with report <200 copies/mL. That is, with reference range, copy numbers (CN) per milliliter (mL) of the LOD were determined by standard curves that correlated Ct value and calibrated standard DNA panels. The three repeats determined that the measuring range was 1E2~1E6 copies/mL. The standard curves show the slopes were within the range −2.99 to −3.65 with R(2) ≥ 0.98. High copy (HC) controls were within 0.17–0.18 log differences of DNA copy numbers; (2) low copy (LC) controls were within 0.17–0.18 log differences; (3) LOD was within 0.14–0.15 log differences. As such, we set up a fast, simple, inexpensive, sensitive, and reliable molecular approach for the qualitative detection of CMV pathogens. Conclusion: This real-time PCR of the 96-well plate format provides a rapid framework as required by the FDA for clinical settings.
format Online
Article
Text
id pubmed-7151591
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-71515912020-04-20 Implementation and Validation of the Roche Light Cycler 480 96-Well Plate Platform as a Real-Time PCR Assay for the Quantitative Detection of Cytomegalovirus (CMV) in Clinical Specimens Using the Luminex MultiCode ASRs System Li, Shengwen Calvin Sparks, Kara J. Sender, Leonard S. Med Sci (Basel) Essay Allogenic stem-cell therapies benefit patients in the treatment of multiple diseases; however, the side effects of stem-cell therapies (SCT) derived from the concomitant use of immune suppression agents often include triggering infection diseases. Thus, analysis is required to improve the detection of pathogen infections in SCT. We develop a polymerase chain reaction (PCR)-based methodology for the qualitative real-time DNA detection of cytomegalovirus (CMV), with reference to herpes simplex virus types 1 (HSVI), Epstein–Barr virus (EBV), and varicella-zoster virus (VZV) in blood, urine, solid tissues, and cerebrospinal fluid. This real-time PCR of 96-well plate format provides a rapid framework as required by the Food and Drug Administration (FDA) for clinical settings, including the processing of specimens, reagent handling, special safety precautions, quality control criteria and analytical accuracy, precisely reportable range (analyst measurement range), reference range, limit of detection (LOD), analytical specificity established by interference study, and analyte stability. Specifically, we determined the reportable range (analyst measurement range) with the following criteria: CMV copies ≥200 copies/mL; report copy/mL value; CMV copies ≤199 copies/mL; report detected but below quantitative range; CMV copies = 0 with report <200 copies/mL. That is, with reference range, copy numbers (CN) per milliliter (mL) of the LOD were determined by standard curves that correlated Ct value and calibrated standard DNA panels. The three repeats determined that the measuring range was 1E2~1E6 copies/mL. The standard curves show the slopes were within the range −2.99 to −3.65 with R(2) ≥ 0.98. High copy (HC) controls were within 0.17–0.18 log differences of DNA copy numbers; (2) low copy (LC) controls were within 0.17–0.18 log differences; (3) LOD was within 0.14–0.15 log differences. As such, we set up a fast, simple, inexpensive, sensitive, and reliable molecular approach for the qualitative detection of CMV pathogens. Conclusion: This real-time PCR of the 96-well plate format provides a rapid framework as required by the FDA for clinical settings. MDPI 2020-03-11 /pmc/articles/PMC7151591/ /pubmed/32168800 http://dx.doi.org/10.3390/medsci8010014 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Essay
Li, Shengwen Calvin
Sparks, Kara J.
Sender, Leonard S.
Implementation and Validation of the Roche Light Cycler 480 96-Well Plate Platform as a Real-Time PCR Assay for the Quantitative Detection of Cytomegalovirus (CMV) in Clinical Specimens Using the Luminex MultiCode ASRs System
title Implementation and Validation of the Roche Light Cycler 480 96-Well Plate Platform as a Real-Time PCR Assay for the Quantitative Detection of Cytomegalovirus (CMV) in Clinical Specimens Using the Luminex MultiCode ASRs System
title_full Implementation and Validation of the Roche Light Cycler 480 96-Well Plate Platform as a Real-Time PCR Assay for the Quantitative Detection of Cytomegalovirus (CMV) in Clinical Specimens Using the Luminex MultiCode ASRs System
title_fullStr Implementation and Validation of the Roche Light Cycler 480 96-Well Plate Platform as a Real-Time PCR Assay for the Quantitative Detection of Cytomegalovirus (CMV) in Clinical Specimens Using the Luminex MultiCode ASRs System
title_full_unstemmed Implementation and Validation of the Roche Light Cycler 480 96-Well Plate Platform as a Real-Time PCR Assay for the Quantitative Detection of Cytomegalovirus (CMV) in Clinical Specimens Using the Luminex MultiCode ASRs System
title_short Implementation and Validation of the Roche Light Cycler 480 96-Well Plate Platform as a Real-Time PCR Assay for the Quantitative Detection of Cytomegalovirus (CMV) in Clinical Specimens Using the Luminex MultiCode ASRs System
title_sort implementation and validation of the roche light cycler 480 96-well plate platform as a real-time pcr assay for the quantitative detection of cytomegalovirus (cmv) in clinical specimens using the luminex multicode asrs system
topic Essay
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151591/
https://www.ncbi.nlm.nih.gov/pubmed/32168800
http://dx.doi.org/10.3390/medsci8010014
work_keys_str_mv AT lishengwencalvin implementationandvalidationoftherochelightcycler48096wellplateplatformasarealtimepcrassayforthequantitativedetectionofcytomegaloviruscmvinclinicalspecimensusingtheluminexmulticodeasrssystem
AT sparkskaraj implementationandvalidationoftherochelightcycler48096wellplateplatformasarealtimepcrassayforthequantitativedetectionofcytomegaloviruscmvinclinicalspecimensusingtheluminexmulticodeasrssystem
AT senderleonards implementationandvalidationoftherochelightcycler48096wellplateplatformasarealtimepcrassayforthequantitativedetectionofcytomegaloviruscmvinclinicalspecimensusingtheluminexmulticodeasrssystem