Cargando…

Rice microtubule‐associated protein IQ67‐DOMAIN14 regulates grain shape by modulating microtubule cytoskeleton dynamics

Cortical microtubule (MT) arrays play a critical role in plant cell shape determination by defining the direction of cell expansion. As plants continuously adapt to ever‐changing environmental conditions, multiple environmental and developmental inputs need to be translated into changes of the MT cy...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, BaoJun, Wendrich, Jos R., De Rybel, Bert, Weijers, Dolf, Xue, Hong‐Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152617/
https://www.ncbi.nlm.nih.gov/pubmed/31622529
http://dx.doi.org/10.1111/pbi.13279
Descripción
Sumario:Cortical microtubule (MT) arrays play a critical role in plant cell shape determination by defining the direction of cell expansion. As plants continuously adapt to ever‐changing environmental conditions, multiple environmental and developmental inputs need to be translated into changes of the MT cytoskeleton. Here, we identify and functionally characterize an auxin‐inducible and MT‐localized protein OsIQ67‐DOMAIN14 (OsIQD14), which is highly expressed in rice seed hull cells. We show that while deficiency of OsIQD14 results in short and wide seeds and increases overall yield, overexpression leads to narrow and long seeds, caused by changed MT alignment. We further show that OsIQD14‐mediated MT reordering is regulated by specifically affecting MT dynamics, and ectopic expression of OsIQD14 in Arabidopsis could change the cell shape both in pavement cells and in hypocotyl cells. Additionally, OsIQD14 activity is tightly controlled by calmodulin proteins, providing an alternative way to modify the OsIQD14 activity. Our results indicate that OsIQD14 acts as a key factor in regulating MT rearrangements in rice hull cells and hence the grain shape, and allows effective local cell shape manipulation to improve the rice yield trait.