Cargando…
Computational Modeling and Analysis to Predict Intracellular Parasite Epitope Characteristics Using Random Forest Technique
BACKGROUND: In a new approach, computational methods are used to design and evaluate the vaccine. The aim of the current study was to develop a computational tool to predict epitope candidate vaccines to be tested in experimental models. METHODS: This study was conducted in the School of Allied Medi...
Autores principales: | JAVADI, Amir, KHAMESIPOUR, Ali, MONAJEMI, Farshid, GHAZISAEEDI, Marjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tehran University of Medical Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152625/ https://www.ncbi.nlm.nih.gov/pubmed/32309231 |
Ejemplares similares
-
Comparison of cytokine profile of IFN-γ, IL-5 and IL-10 in cutaneous leishmaniasis using PBMC vs. whole blood
por: Mohammadi, Akram Miramin, et al.
Publicado: (2019) -
Improving the Prediction of Survival in Cancer Patients by Using Machine Learning Techniques: Experience of Gene Expression Data: A Narrative Review
por: BASHIRI, Azadeh, et al.
Publicado: (2017) -
The Development of Genetic Modification Techniques in Intracellular Parasites and Potential Applications to Microsporidia
por: Reinke, Aaron W., et al.
Publicado: (2015) -
Immune Responses in Cutaneous Leishmaniasis: In vitro Thelper1/Thelper2 Cytokine Profiles Using Live Versus Killed Leishmania major
por: Miramin-Mohammadi, Akram, et al.
Publicado: (2021) -
A Three-Phase Decision Model of Computer-Aided Coding for the Iranian Classification of Health Interventions (IRCHI)
por: Azadmanjir, Zahra, et al.
Publicado: (2017)