Cargando…

Using approximate Bayesian computation for estimating parameters in the cue-based retrieval model of sentence processing

A commonly used approach to parameter estimation in computational models is the so-called grid search procedure: the entire parameter space is searched in small steps to determine the parameter value that provides the best fit to the observed data. This approach has several disadvantages: first, it...

Descripción completa

Detalles Bibliográficos
Autor principal: Vasishth, Shravan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152701/
https://www.ncbi.nlm.nih.gov/pubmed/32300544
http://dx.doi.org/10.1016/j.mex.2020.100850
_version_ 1783521535232835584
author Vasishth, Shravan
author_facet Vasishth, Shravan
author_sort Vasishth, Shravan
collection PubMed
description A commonly used approach to parameter estimation in computational models is the so-called grid search procedure: the entire parameter space is searched in small steps to determine the parameter value that provides the best fit to the observed data. This approach has several disadvantages: first, it can be computationally very expensive; second, one optimal point value of the parameter is reported as the best fit value; we cannot quantify our uncertainty about the parameter estimate. In the main journal article that this methods article accompanies (Jäger et al., 2020, Interference patterns in subject-verb agreement and reflexives revisited: A large-sample study, Journal of Memory and Language), we carried out parameter estimation using Approximate Bayesian Computation (ABC), which is a Bayesian approach that allows us to quantify our uncertainty about the parameter's values given data. This customization has the further advantage that it allows us to generate both prior and posterior predictive distributions of reading times from the cue-based retrieval model of Lewis and Vasishth, 2005. • Instead of the conventional method of using grid search, we use Approximate Bayesian Computation (ABC) for parameter estimation in the [4] model. • The ABC method of parameter estimation has the advantage that the uncertainty of the parameter can be quantified.
format Online
Article
Text
id pubmed-7152701
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-71527012020-04-16 Using approximate Bayesian computation for estimating parameters in the cue-based retrieval model of sentence processing Vasishth, Shravan MethodsX Psychology A commonly used approach to parameter estimation in computational models is the so-called grid search procedure: the entire parameter space is searched in small steps to determine the parameter value that provides the best fit to the observed data. This approach has several disadvantages: first, it can be computationally very expensive; second, one optimal point value of the parameter is reported as the best fit value; we cannot quantify our uncertainty about the parameter estimate. In the main journal article that this methods article accompanies (Jäger et al., 2020, Interference patterns in subject-verb agreement and reflexives revisited: A large-sample study, Journal of Memory and Language), we carried out parameter estimation using Approximate Bayesian Computation (ABC), which is a Bayesian approach that allows us to quantify our uncertainty about the parameter's values given data. This customization has the further advantage that it allows us to generate both prior and posterior predictive distributions of reading times from the cue-based retrieval model of Lewis and Vasishth, 2005. • Instead of the conventional method of using grid search, we use Approximate Bayesian Computation (ABC) for parameter estimation in the [4] model. • The ABC method of parameter estimation has the advantage that the uncertainty of the parameter can be quantified. Elsevier 2020-03-03 /pmc/articles/PMC7152701/ /pubmed/32300544 http://dx.doi.org/10.1016/j.mex.2020.100850 Text en © 2020 The Author(s). Published by Elsevier B.V. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Psychology
Vasishth, Shravan
Using approximate Bayesian computation for estimating parameters in the cue-based retrieval model of sentence processing
title Using approximate Bayesian computation for estimating parameters in the cue-based retrieval model of sentence processing
title_full Using approximate Bayesian computation for estimating parameters in the cue-based retrieval model of sentence processing
title_fullStr Using approximate Bayesian computation for estimating parameters in the cue-based retrieval model of sentence processing
title_full_unstemmed Using approximate Bayesian computation for estimating parameters in the cue-based retrieval model of sentence processing
title_short Using approximate Bayesian computation for estimating parameters in the cue-based retrieval model of sentence processing
title_sort using approximate bayesian computation for estimating parameters in the cue-based retrieval model of sentence processing
topic Psychology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152701/
https://www.ncbi.nlm.nih.gov/pubmed/32300544
http://dx.doi.org/10.1016/j.mex.2020.100850
work_keys_str_mv AT vasishthshravan usingapproximatebayesiancomputationforestimatingparametersinthecuebasedretrievalmodelofsentenceprocessing