Cargando…
Bayesian geostatistical modelling of high-resolution [Formula: see text] exposure in Europe combining data from monitors, satellites and chemical transport models
Bayesian geostatistical regression (GR) models estimate air pollution exposure at high spatial resolution, quantify the prediction uncertainty and provide probabilistic inference on the exceedance of air quality thresholds. However, due to high computational burden, previous GR models have provided...
Autores principales: | Beloconi, Anton, Vounatsou, Penelope |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152800/ https://www.ncbi.nlm.nih.gov/pubmed/32179313 http://dx.doi.org/10.1016/j.envint.2020.105578 |
Ejemplares similares
-
Bayesian geostatistical modelling of PM(10) and PM(2.5) surface level concentrations in Europe using high-resolution satellite-derived products
por: Beloconi, Anton, et al.
Publicado: (2018) -
Substantial
Reduction in Particulate Matter Air Pollution
across Europe during 2006–2019: A Spatiotemporal Modeling Analysis
por: Beloconi, Anton, et al.
Publicado: (2021) -
Bayesian Geostatistical Modeling of Malaria Indicator Survey Data in Angola
por: Gosoniu, Laura, et al.
Publicado: (2010) -
Bayesian Geostatistical Modeling of Leishmaniasis Incidence in Brazil
por: Karagiannis-Voules, Dimitrios-Alexios, et al.
Publicado: (2013) -
Spatio-temporal modelling of changes in air pollution exposure associated to the COVID-19 lockdown measures across Europe
por: Beloconi, Anton, et al.
Publicado: (2021)