Cargando…

Quantitative Evaluation of Dynamic Lateral Meniscal Extrusion After Radial Tear Repair

BACKGROUND: Radial tears of the lateral meniscus frequently accompany acute anterior cruciate ligament (ACL) injuries and lead to increased joint stress and pathological meniscal extrusion (ME). The dynamic behavior of the lateral meniscus after radial tear repair with respect to ME has not been des...

Descripción completa

Detalles Bibliográficos
Autores principales: Winkler, Philipp W., Wierer, Guido, Csapo, Robert, Hepperger, Caroline, Heinzle, Bernhard, Imhoff, Andreas B., Hoser, Christian, Fink, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153201/
https://www.ncbi.nlm.nih.gov/pubmed/32313812
http://dx.doi.org/10.1177/2325967120914568
Descripción
Sumario:BACKGROUND: Radial tears of the lateral meniscus frequently accompany acute anterior cruciate ligament (ACL) injuries and lead to increased joint stress and pathological meniscal extrusion (ME). The dynamic behavior of the lateral meniscus after radial tear repair with respect to ME has not been described. PURPOSE: To quantitatively assess dynamic lateral ME after all-inside radial tear repair. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: Patients who underwent ACL reconstruction and all-inside radial tear repair of the lateral meniscus and had no history of contralateral knee injuries were included. Magnetic resonance imaging scans were acquired in loaded (50% of body weight) and unloaded conditions of both the injured and noninjured knees. A custom-made pneumatically driven knee brace was used for standardized knee positioning in 10° of flexion and with axial load application. Quantitative measures included the absolute lateral ME, meniscal body extrusion ratio, and Δ extrusion. Preoperative and postoperative unloaded extrusion data were compared by paired t tests. For postoperative data, the concomitant influence of the factors “leg” and “condition” were assessed through factorial analyses of variance. RESULTS: A total of 10 patients with a mean follow-up of 47.9 months were enrolled. The intraclass correlation coefficient (ICC) confirmed good interrater reliability (ICC, 0.898) and excellent intrarater reliability (ICC, 0.976). In the unloaded injured leg, all-inside repair reduced ME from 3.15 ± 1.07 mm to 2.13 ± 0.61 mm (–32.4%; P = .033). Overall, load application led to a significant increase in ME (+0.34 mm [+21.8%]; P = .029). Significantly greater ME was observed in the injured knee (+1.10 mm [+93.2%]; P = .001) than in the noninjured knee. The condition × leg interaction was not significant (P = .795), suggesting that the compression-associated increase in ME did not differ significantly between the injured and noninjured knees. CONCLUSION: Lateral ME depends on the knee status and loading condition. All-inside repair of radial meniscal tears led to a reduction of extrusion with no alteration in dynamic lateral ME. Meniscus-preserving therapy is recommended in the case of a radial lateral meniscal tear to preserve its dynamic behavior.