Cargando…

Precise Surface State Control of Carbon Quantum Dots to Enhance Charge Extraction for Solar Cells

Dye-sensitized solar cells are regarded as promising candidates to resolve the energy and environmental issues in recent years, arising from their solution-processable fabrication technology and high power conversion efficiency. However, there are still several problems regarding how to accelerate t...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Qiming, Yang, Wen, Zhang, Yong, Ge, Wen, Yang, Xin, Yang, Peizhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153469/
https://www.ncbi.nlm.nih.gov/pubmed/32143521
http://dx.doi.org/10.3390/nano10030460
Descripción
Sumario:Dye-sensitized solar cells are regarded as promising candidates to resolve the energy and environmental issues in recent years, arising from their solution-processable fabrication technology and high power conversion efficiency. However, there are still several problems regarding how to accelerate the development of this type of photovoltaics, including the limited light-harvesting ability and high-production cost of molecular dye. In the current work, we have systematically studied the role of nitrogen-doped carbon quantum dots (N-CQDs) as co-sensitizers in traditional dye sensitized solar cells. A series of N-CQDs have been prepared by employing chitosan as a precursor via one-pot hydrothermal technology for various times, demonstrating a maximized efficiency as high as 0.089% for an only N-CQDs-based device. Moreover, the co-sensitized solar cell based on N719 dye (C(58)H(86)N(8)O(8)RuS(2)) and optimized N-CQDs shows significantly enhanced performance, yielding a solar-to-electric conversion efficiency of up to 9.15% under one standard sun (AM 1.5G) irradiation, which is much higher than the 8.5%-efficiency of the controlled device without N-CQDs. The matched characteristics of energy level, excellent up-convention, and FRET (Förster resonance energy transfer) abilities of N-CQDs are responsible for their improved power conversion efficiency.