Cargando…

Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion

A simple method for the controllable synthesis of Au nanocrystals–metal selenide hybrid nanostructures via amino acid guiding strategy is proposed. The results show that the symmetric overgrowth mode of PbSe shells on Au nanorods can be precisely manipulated by only adjusting the initial concentrati...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Ling, Liang, Shan, Li, Jian-Bo, Zhang, Dou, Chen, Wen-Bo, Yang, Zhong-Jian, Xiao, Si, Wang, Qu-Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153708/
https://www.ncbi.nlm.nih.gov/pubmed/32245031
http://dx.doi.org/10.3390/nano10030564
_version_ 1783521699499606016
author Tang, Ling
Liang, Shan
Li, Jian-Bo
Zhang, Dou
Chen, Wen-Bo
Yang, Zhong-Jian
Xiao, Si
Wang, Qu-Quan
author_facet Tang, Ling
Liang, Shan
Li, Jian-Bo
Zhang, Dou
Chen, Wen-Bo
Yang, Zhong-Jian
Xiao, Si
Wang, Qu-Quan
author_sort Tang, Ling
collection PubMed
description A simple method for the controllable synthesis of Au nanocrystals–metal selenide hybrid nanostructures via amino acid guiding strategy is proposed. The results show that the symmetric overgrowth mode of PbSe shells on Au nanorods can be precisely manipulated by only adjusting the initial concentration of Pb(2+). The shape of Au–PbSe hybrids can evolve from dumbbell-like to yolk-shell. Interestingly, the plasmonic absorption enhancement could be tuned by the symmetry of these hybrid nanostructures. This provides an effective pathway for maneuvering plasmon-induced energy transfer in metal–semiconductor hybrids. In addition, the photoactivities of Au–PbSe nanorods sensitized TiO(2) electrodes have been further evaluated. Owing to the synergism between effective plasmonic enhancement effect and efficient interfacial charge transfer in these hybrid nanostructures, the Au–PbSe yolk-shell nanorods exhibit an outstanding photocurrent activity. Their photocurrent density is 4.38 times larger than that of Au–PbSe dumbbell-like nanorods under light irradiation at λ > 600 nm. As a versatile method, the proposed strategy can also be employed to synthesize other metal–selenide hybrid nanostructures (such as Au–CdSe, Au–Bi(2)Se(3) and Au–CuSe).
format Online
Article
Text
id pubmed-7153708
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-71537082020-04-20 Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion Tang, Ling Liang, Shan Li, Jian-Bo Zhang, Dou Chen, Wen-Bo Yang, Zhong-Jian Xiao, Si Wang, Qu-Quan Nanomaterials (Basel) Article A simple method for the controllable synthesis of Au nanocrystals–metal selenide hybrid nanostructures via amino acid guiding strategy is proposed. The results show that the symmetric overgrowth mode of PbSe shells on Au nanorods can be precisely manipulated by only adjusting the initial concentration of Pb(2+). The shape of Au–PbSe hybrids can evolve from dumbbell-like to yolk-shell. Interestingly, the plasmonic absorption enhancement could be tuned by the symmetry of these hybrid nanostructures. This provides an effective pathway for maneuvering plasmon-induced energy transfer in metal–semiconductor hybrids. In addition, the photoactivities of Au–PbSe nanorods sensitized TiO(2) electrodes have been further evaluated. Owing to the synergism between effective plasmonic enhancement effect and efficient interfacial charge transfer in these hybrid nanostructures, the Au–PbSe yolk-shell nanorods exhibit an outstanding photocurrent activity. Their photocurrent density is 4.38 times larger than that of Au–PbSe dumbbell-like nanorods under light irradiation at λ > 600 nm. As a versatile method, the proposed strategy can also be employed to synthesize other metal–selenide hybrid nanostructures (such as Au–CdSe, Au–Bi(2)Se(3) and Au–CuSe). MDPI 2020-03-20 /pmc/articles/PMC7153708/ /pubmed/32245031 http://dx.doi.org/10.3390/nano10030564 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tang, Ling
Liang, Shan
Li, Jian-Bo
Zhang, Dou
Chen, Wen-Bo
Yang, Zhong-Jian
Xiao, Si
Wang, Qu-Quan
Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion
title Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion
title_full Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion
title_fullStr Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion
title_full_unstemmed Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion
title_short Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion
title_sort controlled synthesis of au nanocrystals-metal selenide hybrid nanostructures toward plasmon-enhanced photoelectrochemical energy conversion
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153708/
https://www.ncbi.nlm.nih.gov/pubmed/32245031
http://dx.doi.org/10.3390/nano10030564
work_keys_str_mv AT tangling controlledsynthesisofaunanocrystalsmetalselenidehybridnanostructurestowardplasmonenhancedphotoelectrochemicalenergyconversion
AT liangshan controlledsynthesisofaunanocrystalsmetalselenidehybridnanostructurestowardplasmonenhancedphotoelectrochemicalenergyconversion
AT lijianbo controlledsynthesisofaunanocrystalsmetalselenidehybridnanostructurestowardplasmonenhancedphotoelectrochemicalenergyconversion
AT zhangdou controlledsynthesisofaunanocrystalsmetalselenidehybridnanostructurestowardplasmonenhancedphotoelectrochemicalenergyconversion
AT chenwenbo controlledsynthesisofaunanocrystalsmetalselenidehybridnanostructurestowardplasmonenhancedphotoelectrochemicalenergyconversion
AT yangzhongjian controlledsynthesisofaunanocrystalsmetalselenidehybridnanostructurestowardplasmonenhancedphotoelectrochemicalenergyconversion
AT xiaosi controlledsynthesisofaunanocrystalsmetalselenidehybridnanostructurestowardplasmonenhancedphotoelectrochemicalenergyconversion
AT wangququan controlledsynthesisofaunanocrystalsmetalselenidehybridnanostructurestowardplasmonenhancedphotoelectrochemicalenergyconversion