Cargando…
Evaluation of electrohysterogram measured from different gestational weeks for recognizing preterm delivery: a preliminary study using random Forest
Developing a computational method for recognizing preterm delivery is important for timely diagnosis and treatment of preterm delivery. The main aim of this study was to evaluate electrohysterogram (EHG) signals recorded at different gestational weeks for recognizing the preterm delivery using rando...
Autores principales: | Peng, Jin, Hao, Dongmei, Yang, Lin, Du, Mengqing, Song, Xiaoxiao, Jiang, Hongqing, Zhang, Yunhan, Zheng, Dingchang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PWN-Polish Scientific Publishers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153772/ https://www.ncbi.nlm.nih.gov/pubmed/32308250 http://dx.doi.org/10.1016/j.bbe.2019.12.003 |
Ejemplares similares
-
Preliminary Study on the Efficient Electrohysterogram Segments for Recognizing Uterine Contractions with Convolutional Neural Networks
por: Peng, Jin, et al.
Publicado: (2019) -
Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram
por: Hao, Dongmei, et al.
Publicado: (2019) -
Prediction of Preterm Labor from the Electrohysterogram Signals Based on Different Gestational Weeks
por: Mohammadi Far, Somayeh, et al.
Publicado: (2023) -
Automatic recognition of uterine contractions with electrohysterogram signals based on the zero-crossing rate
por: Song, Xiaoxiao, et al.
Publicado: (2021) -
Recognition of uterine contractions with electrohysterogram and exploring the best electrode combination
por: Du, Mengqing, et al.
Publicado: (2022)