Cargando…
DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning
Microscopy image analysis is a major bottleneck in quantification of single-cell microscopy data, typically requiring human oversight and curation, which limit both accuracy and throughput. To address this, we developed a deep learning-based image analysis pipeline that performs segmentation, tracki...
Autores principales: | Lugagne, Jean-Baptiste, Lin, Haonan, Dunlop, Mary J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153852/ https://www.ncbi.nlm.nih.gov/pubmed/32282792 http://dx.doi.org/10.1371/journal.pcbi.1007673 |
Ejemplares similares
-
DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics
por: O’Connor, Owen M., et al.
Publicado: (2022) -
Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning
por: Lin, Haonan, et al.
Publicado: (2021) -
DeLTa-Seq: direct-lysate targeted RNA-Seq from crude tissue lysate
por: Kashima, Makoto, et al.
Publicado: (2022) -
Longitudinal Single‐Cell Imaging of Engineered Strains with Stimulated Raman Scattering to Characterize Heterogeneity in Fatty Acid Production
por: Tague, Nathan, et al.
Publicado: (2023) -
Automated assessment of human engineered heart tissues using deep learning and template matching for segmentation and tracking
por: Rivera‐Arbeláez, José M., et al.
Publicado: (2023)