Cargando…
Computer-Aided Rational Design of Efficient NADPH Production System by Escherichia coli pgi Mutant Using a Mixture of Glucose and Xylose
Lignocellulosic biomass can be hydrolyzed into two major sugars of glucose and xylose, and thus the strategy for the efficient consumption of both sugars is highly desirable. NADPH is the essential molecule for the production of industrially important value-added chemicals, and thus its availability...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154054/ https://www.ncbi.nlm.nih.gov/pubmed/32318559 http://dx.doi.org/10.3389/fbioe.2020.00277 |
_version_ | 1783521754107346944 |
---|---|
author | Matsuoka, Yu Kurata, Hiroyuki |
author_facet | Matsuoka, Yu Kurata, Hiroyuki |
author_sort | Matsuoka, Yu |
collection | PubMed |
description | Lignocellulosic biomass can be hydrolyzed into two major sugars of glucose and xylose, and thus the strategy for the efficient consumption of both sugars is highly desirable. NADPH is the essential molecule for the production of industrially important value-added chemicals, and thus its availability is quite important. Escherichia coli mutant lacking the pgi gene encoding phosphoglucose isomerase (Pgi) has been preferentially used to overproduce the NADPH. However, there exists a disadvantage that the cell growth rate becomes low for the mutant grown on glucose. This limits the efficient NADPH production, and therefore, it is quite important to investigate how addition of different carbon source such as xylose (other than glucose) effectively improves the NADPH production. In this study, we have developed a kinetic model to propose an efficient NADPH production system using E. coli pgi-knockout mutant with a mixture of glucose and xylose. The proposed system adds xylose to glucose medium to recover the suppressed growth of the pgi mutant, and determines the xylose content to maximize the NADPH productivity. Finally, we have designed a mevalonate (MVA) production system by implementing ArcA overexpression into the pgi-knockout mutant using a mixture of glucose and xylose. In addition to NADPH overproduction, the accumulation of acetyl-CoA (AcCoA) is necessary for the efficient MVA production. In the present study, therefore, we considered to overexpress ArcA, where ArcA overexpression suppresses the TCA cycle, causing the overflow of AcCoA, a precursor of MVA. We predicted the xylose content that maximizes the MVA production. This approach demonstrates the possibility of a great progress in the computer-aided rational design of the microbial cell factories for useful metabolite production. |
format | Online Article Text |
id | pubmed-7154054 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71540542020-04-21 Computer-Aided Rational Design of Efficient NADPH Production System by Escherichia coli pgi Mutant Using a Mixture of Glucose and Xylose Matsuoka, Yu Kurata, Hiroyuki Front Bioeng Biotechnol Bioengineering and Biotechnology Lignocellulosic biomass can be hydrolyzed into two major sugars of glucose and xylose, and thus the strategy for the efficient consumption of both sugars is highly desirable. NADPH is the essential molecule for the production of industrially important value-added chemicals, and thus its availability is quite important. Escherichia coli mutant lacking the pgi gene encoding phosphoglucose isomerase (Pgi) has been preferentially used to overproduce the NADPH. However, there exists a disadvantage that the cell growth rate becomes low for the mutant grown on glucose. This limits the efficient NADPH production, and therefore, it is quite important to investigate how addition of different carbon source such as xylose (other than glucose) effectively improves the NADPH production. In this study, we have developed a kinetic model to propose an efficient NADPH production system using E. coli pgi-knockout mutant with a mixture of glucose and xylose. The proposed system adds xylose to glucose medium to recover the suppressed growth of the pgi mutant, and determines the xylose content to maximize the NADPH productivity. Finally, we have designed a mevalonate (MVA) production system by implementing ArcA overexpression into the pgi-knockout mutant using a mixture of glucose and xylose. In addition to NADPH overproduction, the accumulation of acetyl-CoA (AcCoA) is necessary for the efficient MVA production. In the present study, therefore, we considered to overexpress ArcA, where ArcA overexpression suppresses the TCA cycle, causing the overflow of AcCoA, a precursor of MVA. We predicted the xylose content that maximizes the MVA production. This approach demonstrates the possibility of a great progress in the computer-aided rational design of the microbial cell factories for useful metabolite production. Frontiers Media S.A. 2020-04-07 /pmc/articles/PMC7154054/ /pubmed/32318559 http://dx.doi.org/10.3389/fbioe.2020.00277 Text en Copyright © 2020 Matsuoka and Kurata. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Matsuoka, Yu Kurata, Hiroyuki Computer-Aided Rational Design of Efficient NADPH Production System by Escherichia coli pgi Mutant Using a Mixture of Glucose and Xylose |
title | Computer-Aided Rational Design of Efficient NADPH Production System by Escherichia coli pgi Mutant Using a Mixture of Glucose and Xylose |
title_full | Computer-Aided Rational Design of Efficient NADPH Production System by Escherichia coli pgi Mutant Using a Mixture of Glucose and Xylose |
title_fullStr | Computer-Aided Rational Design of Efficient NADPH Production System by Escherichia coli pgi Mutant Using a Mixture of Glucose and Xylose |
title_full_unstemmed | Computer-Aided Rational Design of Efficient NADPH Production System by Escherichia coli pgi Mutant Using a Mixture of Glucose and Xylose |
title_short | Computer-Aided Rational Design of Efficient NADPH Production System by Escherichia coli pgi Mutant Using a Mixture of Glucose and Xylose |
title_sort | computer-aided rational design of efficient nadph production system by escherichia coli pgi mutant using a mixture of glucose and xylose |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154054/ https://www.ncbi.nlm.nih.gov/pubmed/32318559 http://dx.doi.org/10.3389/fbioe.2020.00277 |
work_keys_str_mv | AT matsuokayu computeraidedrationaldesignofefficientnadphproductionsystembyescherichiacolipgimutantusingamixtureofglucoseandxylose AT kuratahiroyuki computeraidedrationaldesignofefficientnadphproductionsystembyescherichiacolipgimutantusingamixtureofglucoseandxylose |