Cargando…

A Machine Learning Approach for High-Dimensional Time-to-Event Prediction With Application to Immunogenicity of Biotherapies in the ABIRISK Cohort

Predicting immunogenicity for biotherapies using patient and drug-related factors represents nowadays a challenging issue. With the growing ability to collect massive amount of data, machine learning algorithms can provide efficient predictive tools. From the bio-clinical data collected in the multi...

Descripción completa

Detalles Bibliográficos
Autores principales: Duhazé, Julianne, Hässler, Signe, Bachelet, Delphine, Gleizes, Aude, Hacein-Bey-Abina, Salima, Allez, Matthieu, Deisenhammer, Florian, Fogdell-Hahn, Anna, Mariette, Xavier, Pallardy, Marc, Broët, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154163/
https://www.ncbi.nlm.nih.gov/pubmed/32318076
http://dx.doi.org/10.3389/fimmu.2020.00608
_version_ 1783521779720912896
author Duhazé, Julianne
Hässler, Signe
Bachelet, Delphine
Gleizes, Aude
Hacein-Bey-Abina, Salima
Allez, Matthieu
Deisenhammer, Florian
Fogdell-Hahn, Anna
Mariette, Xavier
Pallardy, Marc
Broët, Philippe
author_facet Duhazé, Julianne
Hässler, Signe
Bachelet, Delphine
Gleizes, Aude
Hacein-Bey-Abina, Salima
Allez, Matthieu
Deisenhammer, Florian
Fogdell-Hahn, Anna
Mariette, Xavier
Pallardy, Marc
Broët, Philippe
author_sort Duhazé, Julianne
collection PubMed
description Predicting immunogenicity for biotherapies using patient and drug-related factors represents nowadays a challenging issue. With the growing ability to collect massive amount of data, machine learning algorithms can provide efficient predictive tools. From the bio-clinical data collected in the multi-cohort of autoimmune diseases treated with biotherapies from the ABIRISK consortium, we evaluated the predictive power of a custom-built random survival forest for predicting the occurrence of anti-drug antibodies. This procedure takes into account the existence of a population composed of immune-reactive and immune-tolerant subjects as well as the existence of a tiny expected proportion of relevant predictive variables. The practical application to the ABIRISK cohort shows that this approach provides a good predictive accuracy that outperforms the classical survival random forest procedure. Moreover, the individual predicted probabilities allow to separate high and low risk group of patients. To our best knowledge, this is the first study to evaluate the use of machine learning procedures to predict biotherapy immunogenicity based on bioclinical information. It seems that such approach may have potential to provide useful information for the clinical practice of stratifying patients before receiving a biotherapy.
format Online
Article
Text
id pubmed-7154163
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-71541632020-04-21 A Machine Learning Approach for High-Dimensional Time-to-Event Prediction With Application to Immunogenicity of Biotherapies in the ABIRISK Cohort Duhazé, Julianne Hässler, Signe Bachelet, Delphine Gleizes, Aude Hacein-Bey-Abina, Salima Allez, Matthieu Deisenhammer, Florian Fogdell-Hahn, Anna Mariette, Xavier Pallardy, Marc Broët, Philippe Front Immunol Immunology Predicting immunogenicity for biotherapies using patient and drug-related factors represents nowadays a challenging issue. With the growing ability to collect massive amount of data, machine learning algorithms can provide efficient predictive tools. From the bio-clinical data collected in the multi-cohort of autoimmune diseases treated with biotherapies from the ABIRISK consortium, we evaluated the predictive power of a custom-built random survival forest for predicting the occurrence of anti-drug antibodies. This procedure takes into account the existence of a population composed of immune-reactive and immune-tolerant subjects as well as the existence of a tiny expected proportion of relevant predictive variables. The practical application to the ABIRISK cohort shows that this approach provides a good predictive accuracy that outperforms the classical survival random forest procedure. Moreover, the individual predicted probabilities allow to separate high and low risk group of patients. To our best knowledge, this is the first study to evaluate the use of machine learning procedures to predict biotherapy immunogenicity based on bioclinical information. It seems that such approach may have potential to provide useful information for the clinical practice of stratifying patients before receiving a biotherapy. Frontiers Media S.A. 2020-04-07 /pmc/articles/PMC7154163/ /pubmed/32318076 http://dx.doi.org/10.3389/fimmu.2020.00608 Text en Copyright © 2020 Duhazé, Hässler, Bachelet, Gleizes, Hacein-Bey-Abina, Allez, Deisenhammer, Fogdell-Hahn, Mariette, Pallardy and Broët. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Duhazé, Julianne
Hässler, Signe
Bachelet, Delphine
Gleizes, Aude
Hacein-Bey-Abina, Salima
Allez, Matthieu
Deisenhammer, Florian
Fogdell-Hahn, Anna
Mariette, Xavier
Pallardy, Marc
Broët, Philippe
A Machine Learning Approach for High-Dimensional Time-to-Event Prediction With Application to Immunogenicity of Biotherapies in the ABIRISK Cohort
title A Machine Learning Approach for High-Dimensional Time-to-Event Prediction With Application to Immunogenicity of Biotherapies in the ABIRISK Cohort
title_full A Machine Learning Approach for High-Dimensional Time-to-Event Prediction With Application to Immunogenicity of Biotherapies in the ABIRISK Cohort
title_fullStr A Machine Learning Approach for High-Dimensional Time-to-Event Prediction With Application to Immunogenicity of Biotherapies in the ABIRISK Cohort
title_full_unstemmed A Machine Learning Approach for High-Dimensional Time-to-Event Prediction With Application to Immunogenicity of Biotherapies in the ABIRISK Cohort
title_short A Machine Learning Approach for High-Dimensional Time-to-Event Prediction With Application to Immunogenicity of Biotherapies in the ABIRISK Cohort
title_sort machine learning approach for high-dimensional time-to-event prediction with application to immunogenicity of biotherapies in the abirisk cohort
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154163/
https://www.ncbi.nlm.nih.gov/pubmed/32318076
http://dx.doi.org/10.3389/fimmu.2020.00608
work_keys_str_mv AT duhazejulianne amachinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT hasslersigne amachinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT bacheletdelphine amachinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT gleizesaude amachinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT haceinbeyabinasalima amachinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT allezmatthieu amachinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT deisenhammerflorian amachinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT fogdellhahnanna amachinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT mariettexavier amachinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT pallardymarc amachinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT broetphilippe amachinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT duhazejulianne machinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT hasslersigne machinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT bacheletdelphine machinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT gleizesaude machinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT haceinbeyabinasalima machinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT allezmatthieu machinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT deisenhammerflorian machinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT fogdellhahnanna machinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT mariettexavier machinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT pallardymarc machinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort
AT broetphilippe machinelearningapproachforhighdimensionaltimetoeventpredictionwithapplicationtoimmunogenicityofbiotherapiesintheabiriskcohort