Cargando…
A Machine Learning Approach for High-Dimensional Time-to-Event Prediction With Application to Immunogenicity of Biotherapies in the ABIRISK Cohort
Predicting immunogenicity for biotherapies using patient and drug-related factors represents nowadays a challenging issue. With the growing ability to collect massive amount of data, machine learning algorithms can provide efficient predictive tools. From the bio-clinical data collected in the multi...
Autores principales: | Duhazé, Julianne, Hässler, Signe, Bachelet, Delphine, Gleizes, Aude, Hacein-Bey-Abina, Salima, Allez, Matthieu, Deisenhammer, Florian, Fogdell-Hahn, Anna, Mariette, Xavier, Pallardy, Marc, Broët, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154163/ https://www.ncbi.nlm.nih.gov/pubmed/32318076 http://dx.doi.org/10.3389/fimmu.2020.00608 |
Ejemplares similares
-
Assessing the effect of genetic markers on drug immunogenicity from a mechanistic model-based approach
por: Duhazé, Julianne, et al.
Publicado: (2020) -
Clinicogenomic factors of biotherapy immunogenicity in autoimmune disease: A prospective multicohort study of the ABIRISK consortium
por: Hässler, Signe, et al.
Publicado: (2020) -
A Genetic Association Test Accounting for Skewed X-Inactivation With Application to Biotherapy Immunogenicity in Patients With Autoimmune Diseases
por: Hässler, Signe, et al.
Publicado: (2022) -
Machine learning predicts response to TNF inhibitors in rheumatoid arthritis: results on the ESPOIR and ABIRISK cohorts
por: Bouget, Vincent, et al.
Publicado: (2022) -
Standardizing terms, definitions and concepts for describing and interpreting unwanted immunogenicity of biopharmaceuticals: recommendations of the Innovative Medicines Initiative ABIRISK consortium
por: Rup, B, et al.
Publicado: (2015)