Cargando…
Multiclassifier fusion based on radiomics features for the prediction of benign and malignant primary pulmonary solid nodules
BACKGROUND: To test the ability of a multiclassifier model based on radiomics features to predict benign and malignant primary pulmonary solid nodules. METHODS: Computed tomography (CT) images of 342 patients with primary pulmonary solid nodules confirmed by histopathology or follow-up were retrospe...
Autores principales: | Shen, Yao, Xu, Fangyi, Zhu, Wenchao, Hu, Hongjie, Chen, Ting, Li, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154443/ https://www.ncbi.nlm.nih.gov/pubmed/32309318 http://dx.doi.org/10.21037/atm.2020.01.135 |
Ejemplares similares
-
Multiclassifier Radiomics Analysis of Ultrasound for Prediction of Extrathyroidal Extension in Papillary Thyroid Carcinoma in Children
por: Li, Jie, et al.
Publicado: (2023) -
Diagnosis of Benign and Malignant Pulmonary Ground-Glass Nodules
Using Computed Tomography Radiomics Parameters
por: liang, Ling, et al.
Publicado: (2022) -
A comprehensive nomogram combining CT-based radiomics with clinical features for differentiation of benign and malignant lung subcentimeter solid nodules
por: Chen, Chengyu, et al.
Publicado: (2023) -
Spectral CT-based radiomics signature for distinguishing malignant pulmonary nodules from benign
por: Xu, Hang, et al.
Publicado: (2023) -
Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma
por: Xu, Fangyi, et al.
Publicado: (2020)