Cargando…

Non-Structural Carbohydrate Storage Strategy Explains the Spatial Distribution of Treeline Species

Environmental factors that drive carbon storage are often used as an explanation for alpine treeline formation. However, different tree species respond differently to environmental changes, which challenges our understanding of treeline formation and shifts. Therefore, we selected Picea jezoensis an...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Hudong, He, Hongshi, Wu, Zhengfang, Cong, Yu, Zong, Shengwei, He, Jianan, Fu, Yuanyuan, Liu, Kai, Sun, Hang, Li, Yan, Yu, Changbao, Xu, Jindan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154803/
https://www.ncbi.nlm.nih.gov/pubmed/32244958
http://dx.doi.org/10.3390/plants9030384
Descripción
Sumario:Environmental factors that drive carbon storage are often used as an explanation for alpine treeline formation. However, different tree species respond differently to environmental changes, which challenges our understanding of treeline formation and shifts. Therefore, we selected Picea jezoensis and Betula ermanii, the two treeline species naturally occurring in Changbai Mountain in China, and measured the concentration of non-structural carbohydrates (NSC), soluble sugars and starch in one-year-old leaves, shoots, stems and fine roots at different elevations. We found that compared with P. jezoensis, the NSC and soluble sugars concentrations of leaves and shoots of B. ermanii were higher than those of P. jezoensis, while the starch concentration of all the tissues were lower. Moreover, the concentration of NSC, soluble sugars and starch in the leaves of B. ermanii decreased with elevation. In addition, the starch concentration of B. ermanii shoots, stems and fine roots remained at a high level regardless of whether the soluble sugars concentration decreased. Whereas the concentrations of soluble sugars and starch in one-year-old leaves, shoots and stems of P. jezoensis responded similarly changes with elevation. These findings demonstrate that compared with P. jezoensis, B. ermanii has a higher soluble sugars/starch ratio, and its shoots, stems and fine roots actively store NSC to adapt to the harsh environment, which is one of the reasons that B. ermanii can be distributed at higher altitudes.