Cargando…
Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and Machine Learning Algorithms
Tea trees are kept in shaded locations to increase their chlorophyll content, which influences green tea quality. Therefore, monitoring change in chlorophyll content under low light conditions is important for managing tea trees and producing high-quality green tea. Hyperspectral remote sensing is o...
Autores principales: | Sonobe, Rei, Hirono, Yuhei, Oi, Ayako |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154821/ https://www.ncbi.nlm.nih.gov/pubmed/32192044 http://dx.doi.org/10.3390/plants9030368 |
Ejemplares similares
-
Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms
por: Yamashita, Hiroto, et al.
Publicado: (2020) -
Potential of spectroscopic analyses for non-destructive estimation of tea quality-related metabolites in fresh new leaves
por: Yamashita, Hiroto, et al.
Publicado: (2021) -
Reflectance Variation within the In-Chlorophyll Centre Waveband for Robust Retrieval of Leaf Chlorophyll Content
por: Zhang, Jing, et al.
Publicado: (2014) -
Best hyperspectral indices for assessing leaf chlorophyll content in a degraded temperate vegetation
por: Peng, Yu, et al.
Publicado: (2018) -
Hyperspectral Leaf Reflectance as Proxy for Photosynthetic Capacities: An Ensemble Approach Based on Multiple Machine Learning Algorithms
por: Fu, Peng, et al.
Publicado: (2019)