Cargando…
Biological and Cellular Functions of the Microdomain-Associated FWL/CNR Protein Family in Plants
Membrane microdomains/nanodomains are sub-compartments of the plasma membrane enriched in sphingolipids and characterized by their unique protein composition. They play important roles in regulating plant development and plant-microbe interactions including mutualistic symbiotic interactions. Severa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154862/ https://www.ncbi.nlm.nih.gov/pubmed/32204387 http://dx.doi.org/10.3390/plants9030377 |
Sumario: | Membrane microdomains/nanodomains are sub-compartments of the plasma membrane enriched in sphingolipids and characterized by their unique protein composition. They play important roles in regulating plant development and plant-microbe interactions including mutualistic symbiotic interactions. Several protein families are associated with the microdomain fraction of biological membranes such as flotillins, prohibitins, and remorins. More recently, GmFWL1, a FWL/CNR protein exclusively expressed in the soybean nodule, was functionally characterized as a new microdomain-associated protein. Interestingly, GmFWL1 is homologous to the tomato FW2-2 protein, a major regulator of tomato fruit development. In this review, we summarize the knowledge gained about the biological, cellular, and physiological functions of members of the FWL/CNR family across various plant species. The role of the FWL/CNR proteins is also discussed within the scope of their evolution and transcriptional regulation. |
---|