Cargando…
Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown under Two Different Soils of China
Copper (Cu) is an essential heavy metal for plants, but high Cu concentration in the soil causes phytotoxicity. Some plants, however, possess a system that can overcome Cu toxicity, such as Cu localization, and an active antioxidant defence system to reduce oxidative damage induced by high Cu concen...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154872/ https://www.ncbi.nlm.nih.gov/pubmed/32213938 http://dx.doi.org/10.3390/plants9030404 |
_version_ | 1783521914530037760 |
---|---|
author | Saleem, Muhammad Hamzah Ali, Shafaqat Irshad, Sana Hussaan, Muhammad Rizwan, Muhammad Rana, Muhammad Shoaib Hashem, Abeer Abd_Allah, Elsayed Fathi Ahmad, Parvaiz |
author_facet | Saleem, Muhammad Hamzah Ali, Shafaqat Irshad, Sana Hussaan, Muhammad Rizwan, Muhammad Rana, Muhammad Shoaib Hashem, Abeer Abd_Allah, Elsayed Fathi Ahmad, Parvaiz |
author_sort | Saleem, Muhammad Hamzah |
collection | PubMed |
description | Copper (Cu) is an essential heavy metal for plants, but high Cu concentration in the soil causes phytotoxicity. Some plants, however, possess a system that can overcome Cu toxicity, such as Cu localization, and an active antioxidant defence system to reduce oxidative damage induced by high Cu concentration. The present study was conducted to explore the phytoremediation potential, morpho-physiological traits, antioxidant capacity, and fibre quality of jute (Corchorus capsularis) grown in a mixture of Cu-contaminated soil and natural soil at ratios of 0:1 (control), 1:0, 1:1, 1:2 and 1:4. Our results showed that high Cu concentration in the soil decreased plant growth, plant biomass, chlorophyll content, gaseous exchange, and fibre yield while increasing reactive oxygen species (ROS), which indicated oxidative stress induced by high Cu concentration in the soil. Antioxidant enzymes, such as superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) scavenge ROS in plant cells/tissues. Furthermore, high Cu concentration did not significantly worsen the fibre quality of C. capsularis, and this plant was able to accumulate a large amount of Cu, with higher Cu accumulation in its shoots than in its roots. Transmission electron microscopy (TEM) revealed that Cu toxicity affected different organelles of C. capsularis, with the chloroplast as the most affected organelle. On the basis of these results, we concluded that high Cu concentration was toxic to C. capsularis, reducing crop yield and plant productivity, but showing little effect on plant fibre yield. Hence, C. capsularis, as a fibrous crop, can accumulate a high concentration of Cu when grown in Cu-contaminated sites. |
format | Online Article Text |
id | pubmed-7154872 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71548722020-04-21 Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown under Two Different Soils of China Saleem, Muhammad Hamzah Ali, Shafaqat Irshad, Sana Hussaan, Muhammad Rizwan, Muhammad Rana, Muhammad Shoaib Hashem, Abeer Abd_Allah, Elsayed Fathi Ahmad, Parvaiz Plants (Basel) Article Copper (Cu) is an essential heavy metal for plants, but high Cu concentration in the soil causes phytotoxicity. Some plants, however, possess a system that can overcome Cu toxicity, such as Cu localization, and an active antioxidant defence system to reduce oxidative damage induced by high Cu concentration. The present study was conducted to explore the phytoremediation potential, morpho-physiological traits, antioxidant capacity, and fibre quality of jute (Corchorus capsularis) grown in a mixture of Cu-contaminated soil and natural soil at ratios of 0:1 (control), 1:0, 1:1, 1:2 and 1:4. Our results showed that high Cu concentration in the soil decreased plant growth, plant biomass, chlorophyll content, gaseous exchange, and fibre yield while increasing reactive oxygen species (ROS), which indicated oxidative stress induced by high Cu concentration in the soil. Antioxidant enzymes, such as superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) scavenge ROS in plant cells/tissues. Furthermore, high Cu concentration did not significantly worsen the fibre quality of C. capsularis, and this plant was able to accumulate a large amount of Cu, with higher Cu accumulation in its shoots than in its roots. Transmission electron microscopy (TEM) revealed that Cu toxicity affected different organelles of C. capsularis, with the chloroplast as the most affected organelle. On the basis of these results, we concluded that high Cu concentration was toxic to C. capsularis, reducing crop yield and plant productivity, but showing little effect on plant fibre yield. Hence, C. capsularis, as a fibrous crop, can accumulate a high concentration of Cu when grown in Cu-contaminated sites. MDPI 2020-03-24 /pmc/articles/PMC7154872/ /pubmed/32213938 http://dx.doi.org/10.3390/plants9030404 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Saleem, Muhammad Hamzah Ali, Shafaqat Irshad, Sana Hussaan, Muhammad Rizwan, Muhammad Rana, Muhammad Shoaib Hashem, Abeer Abd_Allah, Elsayed Fathi Ahmad, Parvaiz Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown under Two Different Soils of China |
title | Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown under Two Different Soils of China |
title_full | Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown under Two Different Soils of China |
title_fullStr | Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown under Two Different Soils of China |
title_full_unstemmed | Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown under Two Different Soils of China |
title_short | Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown under Two Different Soils of China |
title_sort | copper uptake and accumulation, ultra-structural alteration, and bast fibre yield and quality of fibrous jute (corchorus capsularis l.) plants grown under two different soils of china |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154872/ https://www.ncbi.nlm.nih.gov/pubmed/32213938 http://dx.doi.org/10.3390/plants9030404 |
work_keys_str_mv | AT saleemmuhammadhamzah copperuptakeandaccumulationultrastructuralalterationandbastfibreyieldandqualityoffibrousjutecorchoruscapsularislplantsgrownundertwodifferentsoilsofchina AT alishafaqat copperuptakeandaccumulationultrastructuralalterationandbastfibreyieldandqualityoffibrousjutecorchoruscapsularislplantsgrownundertwodifferentsoilsofchina AT irshadsana copperuptakeandaccumulationultrastructuralalterationandbastfibreyieldandqualityoffibrousjutecorchoruscapsularislplantsgrownundertwodifferentsoilsofchina AT hussaanmuhammad copperuptakeandaccumulationultrastructuralalterationandbastfibreyieldandqualityoffibrousjutecorchoruscapsularislplantsgrownundertwodifferentsoilsofchina AT rizwanmuhammad copperuptakeandaccumulationultrastructuralalterationandbastfibreyieldandqualityoffibrousjutecorchoruscapsularislplantsgrownundertwodifferentsoilsofchina AT ranamuhammadshoaib copperuptakeandaccumulationultrastructuralalterationandbastfibreyieldandqualityoffibrousjutecorchoruscapsularislplantsgrownundertwodifferentsoilsofchina AT hashemabeer copperuptakeandaccumulationultrastructuralalterationandbastfibreyieldandqualityoffibrousjutecorchoruscapsularislplantsgrownundertwodifferentsoilsofchina AT abdallahelsayedfathi copperuptakeandaccumulationultrastructuralalterationandbastfibreyieldandqualityoffibrousjutecorchoruscapsularislplantsgrownundertwodifferentsoilsofchina AT ahmadparvaiz copperuptakeandaccumulationultrastructuralalterationandbastfibreyieldandqualityoffibrousjutecorchoruscapsularislplantsgrownundertwodifferentsoilsofchina |