Cargando…
Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus
Melanose disease caused by Diaporthe citri is considered as one of the most important and destructive diseases of citrus worldwide. In this study, isolates from melanose samples were obtained and analyzed. Firstly, the internal transcribed spacer (ITS) sequences were used to measure Diaporthe-like b...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154919/ https://www.ncbi.nlm.nih.gov/pubmed/32143512 http://dx.doi.org/10.3390/plants9030329 |
_version_ | 1783521925545328640 |
---|---|
author | Chaisiri, Chingchai Liu, Xiang-Yu Lin, Yang Li, Jiang-Bo Xiong, Bin Luo, Chao-Xi |
author_facet | Chaisiri, Chingchai Liu, Xiang-Yu Lin, Yang Li, Jiang-Bo Xiong, Bin Luo, Chao-Xi |
author_sort | Chaisiri, Chingchai |
collection | PubMed |
description | Melanose disease caused by Diaporthe citri is considered as one of the most important and destructive diseases of citrus worldwide. In this study, isolates from melanose samples were obtained and analyzed. Firstly, the internal transcribed spacer (ITS) sequences were used to measure Diaporthe-like boundary species. Then, a subset of thirty-eight representatives were selected to perform the phylogenetic analysis with combined sequences of ITS, beta-tubulin gene (TUB), translation elongation factor 1-α gene (TEF), calmodulin gene (CAL), and histone-3 gene (HIS). As a result, these representative isolates were identified belonging to D. citri, D. citriasiana, D. discoidispora, D. eres, D. sojae, and D. unshiuensis. Among these species, the D. citri was the predominant species that could be isolated at highest rate from different melanose diseased tissues. The morphological characteristics of representative isolates of D. citri were investigated on different media. Finally, a molecular tool based on the novel species-specific primer pair TUBDcitri-F1/TUBD-R1, which was designed from TUB gene, was developed to detect D. citri efficiently. A polymerase chain reaction (PCR) amplicon of 217 bp could be specifically amplified with the developed molecular tool. The sensitivity of the novel species-specific detection was upon to 10 pg of D. citri genomic DNA in a reaction. Therefore, the D. citri could be unequivocally identified from closely related Diaporthe species by using this simple PCR approach. |
format | Online Article Text |
id | pubmed-7154919 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-71549192020-04-21 Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus Chaisiri, Chingchai Liu, Xiang-Yu Lin, Yang Li, Jiang-Bo Xiong, Bin Luo, Chao-Xi Plants (Basel) Article Melanose disease caused by Diaporthe citri is considered as one of the most important and destructive diseases of citrus worldwide. In this study, isolates from melanose samples were obtained and analyzed. Firstly, the internal transcribed spacer (ITS) sequences were used to measure Diaporthe-like boundary species. Then, a subset of thirty-eight representatives were selected to perform the phylogenetic analysis with combined sequences of ITS, beta-tubulin gene (TUB), translation elongation factor 1-α gene (TEF), calmodulin gene (CAL), and histone-3 gene (HIS). As a result, these representative isolates were identified belonging to D. citri, D. citriasiana, D. discoidispora, D. eres, D. sojae, and D. unshiuensis. Among these species, the D. citri was the predominant species that could be isolated at highest rate from different melanose diseased tissues. The morphological characteristics of representative isolates of D. citri were investigated on different media. Finally, a molecular tool based on the novel species-specific primer pair TUBDcitri-F1/TUBD-R1, which was designed from TUB gene, was developed to detect D. citri efficiently. A polymerase chain reaction (PCR) amplicon of 217 bp could be specifically amplified with the developed molecular tool. The sensitivity of the novel species-specific detection was upon to 10 pg of D. citri genomic DNA in a reaction. Therefore, the D. citri could be unequivocally identified from closely related Diaporthe species by using this simple PCR approach. MDPI 2020-03-04 /pmc/articles/PMC7154919/ /pubmed/32143512 http://dx.doi.org/10.3390/plants9030329 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chaisiri, Chingchai Liu, Xiang-Yu Lin, Yang Li, Jiang-Bo Xiong, Bin Luo, Chao-Xi Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus |
title | Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus |
title_full | Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus |
title_fullStr | Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus |
title_full_unstemmed | Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus |
title_short | Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus |
title_sort | phylogenetic analysis and development of molecular tool for detection of diaporthe citri causing melanose disease of citrus |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154919/ https://www.ncbi.nlm.nih.gov/pubmed/32143512 http://dx.doi.org/10.3390/plants9030329 |
work_keys_str_mv | AT chaisirichingchai phylogeneticanalysisanddevelopmentofmoleculartoolfordetectionofdiaporthecitricausingmelanosediseaseofcitrus AT liuxiangyu phylogeneticanalysisanddevelopmentofmoleculartoolfordetectionofdiaporthecitricausingmelanosediseaseofcitrus AT linyang phylogeneticanalysisanddevelopmentofmoleculartoolfordetectionofdiaporthecitricausingmelanosediseaseofcitrus AT lijiangbo phylogeneticanalysisanddevelopmentofmoleculartoolfordetectionofdiaporthecitricausingmelanosediseaseofcitrus AT xiongbin phylogeneticanalysisanddevelopmentofmoleculartoolfordetectionofdiaporthecitricausingmelanosediseaseofcitrus AT luochaoxi phylogeneticanalysisanddevelopmentofmoleculartoolfordetectionofdiaporthecitricausingmelanosediseaseofcitrus |