Cargando…
High spatial resolution inorganic scintillator detector for high‐energy X‐ray beam at small field irradiation
PURPOSE: Small field dosimetry for radiotherapy is one of the major challenges due to the size of most dosimeters, for example, sufficient spatial resolution, accurate dose distribution and energy dependency of the detector. In this context, the purpose of this research is to develop a small size sc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155062/ https://www.ncbi.nlm.nih.gov/pubmed/31883388 http://dx.doi.org/10.1002/mp.14002 |
_version_ | 1783521955303915520 |
---|---|
author | Debnath, Sree Bash Chandra Fauquet, Carole Tallet, Agnes Goncalves, Anthony Lavandier, Sébastien Jandard, Franck Tonneau, Didier Darreon, Julien |
author_facet | Debnath, Sree Bash Chandra Fauquet, Carole Tallet, Agnes Goncalves, Anthony Lavandier, Sébastien Jandard, Franck Tonneau, Didier Darreon, Julien |
author_sort | Debnath, Sree Bash Chandra |
collection | PubMed |
description | PURPOSE: Small field dosimetry for radiotherapy is one of the major challenges due to the size of most dosimeters, for example, sufficient spatial resolution, accurate dose distribution and energy dependency of the detector. In this context, the purpose of this research is to develop a small size scintillating detector targeting small field dosimetry and compare its performance with other commercial detectors. METHOD: An inorganic scintillator detector (ISD) of about 200 µm outer diameter was developed and tested through different small field dosimetric characterizations under high‐energy photons (6 and 15 MV) delivered by an Elekta Linear Accelerator (LINAC). Percentage depth dose (PDD) and beam profile measurements were compared using dosimeters from PTW namely, microdiamond and PinPoint three‐dimensional (PP3D) detector. A background fiber method has been considered to quantitate and eliminate the minimal Cerenkov effect from the total optical signal magnitude. Measurements were performed inside a water phantom under IAEA Technical Reports Series recommendations (IAEA TRS 381 and TRS 483). RESULTS: Small fields ranging from 3 × 3 cm(2), down to 0.5 × 0.5 cm(2) were sequentially measured using the ISD and commercial dosimeters, and a good agreement was obtained among all measurements. The result also shows that, scintillating detector has good repeatability and reproducibility of the output signal with maximum deviation of 0.26% and 0.5% respectively. The Full Width Half Maximum (FWHM) was measured 0.55 cm for the smallest available square size field of 0.5 × 0.5 cm(2), where the discrepancy of 0.05 cm is due to the scattering effects inside the water and convolution effect between field and detector geometries. Percentage depth dose factor dependence variation with water depth exhibits nearly the same behavior for all tested detectors. The ISD allows to perform dose measurements at a very high accuracy from low (50 cGy/min) to high dose rates (800 cGy/min) and was found to be independent of dose rate variation. The detection system also showed an excellent linearity with dose; hence, calibration was easily achieved. CONCLUSIONS: The developed detector can be used to accurately measure the delivered dose at small fields during the treatment of small volume tumors. The author's measurement shows that despite using a nonwater‐equivalent detector, the detector can be a powerful candidate for beam characterization and quality assurance in, for example, radiosurgery, Intensity‐Modulated Radiotherapy (IMRT), and brachytherapy. Our detector can provide real‐time dose measurement and good spatial resolution with immediate readout, simplicity, flexibility, and robustness. |
format | Online Article Text |
id | pubmed-7155062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71550622020-04-15 High spatial resolution inorganic scintillator detector for high‐energy X‐ray beam at small field irradiation Debnath, Sree Bash Chandra Fauquet, Carole Tallet, Agnes Goncalves, Anthony Lavandier, Sébastien Jandard, Franck Tonneau, Didier Darreon, Julien Med Phys COMPUTATIONAL AND EXPERIMENTAL DOSIMETRY PURPOSE: Small field dosimetry for radiotherapy is one of the major challenges due to the size of most dosimeters, for example, sufficient spatial resolution, accurate dose distribution and energy dependency of the detector. In this context, the purpose of this research is to develop a small size scintillating detector targeting small field dosimetry and compare its performance with other commercial detectors. METHOD: An inorganic scintillator detector (ISD) of about 200 µm outer diameter was developed and tested through different small field dosimetric characterizations under high‐energy photons (6 and 15 MV) delivered by an Elekta Linear Accelerator (LINAC). Percentage depth dose (PDD) and beam profile measurements were compared using dosimeters from PTW namely, microdiamond and PinPoint three‐dimensional (PP3D) detector. A background fiber method has been considered to quantitate and eliminate the minimal Cerenkov effect from the total optical signal magnitude. Measurements were performed inside a water phantom under IAEA Technical Reports Series recommendations (IAEA TRS 381 and TRS 483). RESULTS: Small fields ranging from 3 × 3 cm(2), down to 0.5 × 0.5 cm(2) were sequentially measured using the ISD and commercial dosimeters, and a good agreement was obtained among all measurements. The result also shows that, scintillating detector has good repeatability and reproducibility of the output signal with maximum deviation of 0.26% and 0.5% respectively. The Full Width Half Maximum (FWHM) was measured 0.55 cm for the smallest available square size field of 0.5 × 0.5 cm(2), where the discrepancy of 0.05 cm is due to the scattering effects inside the water and convolution effect between field and detector geometries. Percentage depth dose factor dependence variation with water depth exhibits nearly the same behavior for all tested detectors. The ISD allows to perform dose measurements at a very high accuracy from low (50 cGy/min) to high dose rates (800 cGy/min) and was found to be independent of dose rate variation. The detection system also showed an excellent linearity with dose; hence, calibration was easily achieved. CONCLUSIONS: The developed detector can be used to accurately measure the delivered dose at small fields during the treatment of small volume tumors. The author's measurement shows that despite using a nonwater‐equivalent detector, the detector can be a powerful candidate for beam characterization and quality assurance in, for example, radiosurgery, Intensity‐Modulated Radiotherapy (IMRT), and brachytherapy. Our detector can provide real‐time dose measurement and good spatial resolution with immediate readout, simplicity, flexibility, and robustness. John Wiley and Sons Inc. 2020-01-23 2020-03 /pmc/articles/PMC7155062/ /pubmed/31883388 http://dx.doi.org/10.1002/mp.14002 Text en © 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | COMPUTATIONAL AND EXPERIMENTAL DOSIMETRY Debnath, Sree Bash Chandra Fauquet, Carole Tallet, Agnes Goncalves, Anthony Lavandier, Sébastien Jandard, Franck Tonneau, Didier Darreon, Julien High spatial resolution inorganic scintillator detector for high‐energy X‐ray beam at small field irradiation |
title | High spatial resolution inorganic scintillator detector for high‐energy X‐ray beam at small field irradiation |
title_full | High spatial resolution inorganic scintillator detector for high‐energy X‐ray beam at small field irradiation |
title_fullStr | High spatial resolution inorganic scintillator detector for high‐energy X‐ray beam at small field irradiation |
title_full_unstemmed | High spatial resolution inorganic scintillator detector for high‐energy X‐ray beam at small field irradiation |
title_short | High spatial resolution inorganic scintillator detector for high‐energy X‐ray beam at small field irradiation |
title_sort | high spatial resolution inorganic scintillator detector for high‐energy x‐ray beam at small field irradiation |
topic | COMPUTATIONAL AND EXPERIMENTAL DOSIMETRY |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155062/ https://www.ncbi.nlm.nih.gov/pubmed/31883388 http://dx.doi.org/10.1002/mp.14002 |
work_keys_str_mv | AT debnathsreebashchandra highspatialresolutioninorganicscintillatordetectorforhighenergyxraybeamatsmallfieldirradiation AT fauquetcarole highspatialresolutioninorganicscintillatordetectorforhighenergyxraybeamatsmallfieldirradiation AT talletagnes highspatialresolutioninorganicscintillatordetectorforhighenergyxraybeamatsmallfieldirradiation AT goncalvesanthony highspatialresolutioninorganicscintillatordetectorforhighenergyxraybeamatsmallfieldirradiation AT lavandiersebastien highspatialresolutioninorganicscintillatordetectorforhighenergyxraybeamatsmallfieldirradiation AT jandardfranck highspatialresolutioninorganicscintillatordetectorforhighenergyxraybeamatsmallfieldirradiation AT tonneaudidier highspatialresolutioninorganicscintillatordetectorforhighenergyxraybeamatsmallfieldirradiation AT darreonjulien highspatialresolutioninorganicscintillatordetectorforhighenergyxraybeamatsmallfieldirradiation |