Cargando…
Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction
BACKGROUND: Structured illumination microscopy (SIM) is a method that can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging set-up and data-processing methods results in high-quality images without artifacts due to m...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155289/ https://www.ncbi.nlm.nih.gov/pubmed/32285910 http://dx.doi.org/10.1093/gigascience/giaa035 |
_version_ | 1783522002518147072 |
---|---|
author | Johnson, Karl A Hagen, Guy M |
author_facet | Johnson, Karl A Hagen, Guy M |
author_sort | Johnson, Karl A |
collection | PubMed |
description | BACKGROUND: Structured illumination microscopy (SIM) is a method that can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging set-up and data-processing methods results in high-quality images without artifacts due to mosaicking or due to the use of SIM methods. Reconstruction methods based on Bayesian estimation can be used to produce images with a resolution beyond that dictated by the optical system. FINDINGS: Five complete datasets are presented including large panoramic SIM images of human tissues in pathophysiological conditions. Cancers of the prostate, skin, ovary, and breast, as well as tuberculosis of the lung, were imaged using SIM. The samples are available commercially and are standard histological preparations stained with hematoxylin-eosin. CONCLUSION: The use of fluorescence microscopy is increasing in histopathology. There is a need for methods that reduce artifacts caused by the use of image-stitching methods or optical sectioning methods such as SIM. Stitched SIM images produce results that may be useful for intraoperative histology. Releasing high-quality, full-slide images and related data will aid researchers in furthering the field of fluorescent histopathology. |
format | Online Article Text |
id | pubmed-7155289 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-71552892020-04-17 Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction Johnson, Karl A Hagen, Guy M Gigascience Data Note BACKGROUND: Structured illumination microscopy (SIM) is a method that can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging set-up and data-processing methods results in high-quality images without artifacts due to mosaicking or due to the use of SIM methods. Reconstruction methods based on Bayesian estimation can be used to produce images with a resolution beyond that dictated by the optical system. FINDINGS: Five complete datasets are presented including large panoramic SIM images of human tissues in pathophysiological conditions. Cancers of the prostate, skin, ovary, and breast, as well as tuberculosis of the lung, were imaged using SIM. The samples are available commercially and are standard histological preparations stained with hematoxylin-eosin. CONCLUSION: The use of fluorescence microscopy is increasing in histopathology. There is a need for methods that reduce artifacts caused by the use of image-stitching methods or optical sectioning methods such as SIM. Stitched SIM images produce results that may be useful for intraoperative histology. Releasing high-quality, full-slide images and related data will aid researchers in furthering the field of fluorescent histopathology. Oxford University Press 2020-04-14 /pmc/articles/PMC7155289/ /pubmed/32285910 http://dx.doi.org/10.1093/gigascience/giaa035 Text en © The Author(s) 2020. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Data Note Johnson, Karl A Hagen, Guy M Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction |
title | Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction |
title_full | Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction |
title_fullStr | Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction |
title_full_unstemmed | Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction |
title_short | Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction |
title_sort | artifact-free whole-slide imaging with structured illumination microscopy and bayesian image reconstruction |
topic | Data Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155289/ https://www.ncbi.nlm.nih.gov/pubmed/32285910 http://dx.doi.org/10.1093/gigascience/giaa035 |
work_keys_str_mv | AT johnsonkarla artifactfreewholeslideimagingwithstructuredilluminationmicroscopyandbayesianimagereconstruction AT hagenguym artifactfreewholeslideimagingwithstructuredilluminationmicroscopyandbayesianimagereconstruction |