Cargando…
Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction
BACKGROUND: Structured illumination microscopy (SIM) is a method that can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging set-up and data-processing methods results in high-quality images without artifacts due to m...
Autores principales: | Johnson, Karl A, Hagen, Guy M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155289/ https://www.ncbi.nlm.nih.gov/pubmed/32285910 http://dx.doi.org/10.1093/gigascience/giaa035 |
Ejemplares similares
-
Imaging tissues and cells beyond the diffraction limit with structured illumination microscopy and Bayesian image reconstruction
por: Pospíšil, Jakub, et al.
Publicado: (2018) -
Rapid, artifact-reduced, image reconstruction for super-resolution structured illumination microscopy
por: Wang, Zhaojun, et al.
Publicado: (2023) -
Super-resolution imaging of neuronal structure with structured illumination microscopy
por: Paul, Tristan C., et al.
Publicado: (2023) -
Super-Resolution Imaging of Neuronal Structures with Structured Illumination Microscopy
por: Paul, Tristan C., et al.
Publicado: (2023) -
Eliminating tissue-fold artifacts in histopathological whole-slide images for improved image-based prediction of cancer grade
por: Kothari, Sonal, et al.
Publicado: (2013)