Cargando…
Advanced machine learning model for better prediction accuracy of soil temperature at different depths
Soil temperature has a vital importance in biological, physical and chemical processes of terrestrial ecosystem and its modeling at different depths is very important for land-atmosphere interactions. The study compares four machine learning techniques, extreme learning machine (ELM), artificial neu...
Autores principales: | Alizamir, Meysam, Kisi, Ozgur, Ahmed, Ali Najah, Mert, Cihan, Fai, Chow Ming, Kim, Sungwon, Kim, Nam Won, El-Shafie, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156082/ https://www.ncbi.nlm.nih.gov/pubmed/32287272 http://dx.doi.org/10.1371/journal.pone.0231055 |
Ejemplares similares
-
An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration
por: Ehteram, Mohammad, et al.
Publicado: (2019) -
Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia
por: Hanoon, Marwah Sattar, et al.
Publicado: (2021) -
Artificial neural network model with different backpropagation algorithms and meteorological data for solar radiation prediction
por: Heng, Seah Yi, et al.
Publicado: (2022) -
Reference Evapotranspiration Modeling Using New Heuristic Methods
por: Muhammad Adnan, Rana, et al.
Publicado: (2020) -
Spatial modeling of long-term air temperatures for sustainability: evolutionary fuzzy approach and neuro-fuzzy methods
por: Sadeghi-Niaraki, Abolghasem, et al.
Publicado: (2020)