Cargando…
Quantifying the incremental value of deep learning: Application to lung nodule detection
We present a case study for implementing a machine learning algorithm with an incremental value framework in the domain of lung cancer research. Machine learning methods have often been shown to be competitive with prediction models in some domains; however, implementation of these methods is in ear...
Autores principales: | Warsavage, Theodore, Xing, Fuyong, Barón, Anna E., Feser, William J., Hirsch, Erin, Miller, York E., Malkoski, Stephen, Wolf, Holly J., Wilson, David O., Ghosh, Debashis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156089/ https://www.ncbi.nlm.nih.gov/pubmed/32287288 http://dx.doi.org/10.1371/journal.pone.0231468 |
Ejemplares similares
-
Deep learning on graphs for multi-omics classification of COPD
por: Zhuang, Yonghua, et al.
Publicado: (2023) -
Results of a pilot risk-based lung cancer screening study: outcomes and comparisons to a Medicare eligible cohort
por: Hirsch, Erin A., et al.
Publicado: (2023) -
Association of Ischemic Evaluation and Clinical Outcomes Among Patients Admitted With New‐Onset Heart Failure
por: McGuinn, Erin, et al.
Publicado: (2021) -
Increasing enrolment in a national VA transitions of care programme: a pre–post evaluation of a data dashboard and nudge-based intervention
por: Connelly, Brigid, et al.
Publicado: (2021) -
Quantifying the spatial clustering characteristics of radiographic emphysema explains variability in pulmonary function
por: Vestal, Brian E., et al.
Publicado: (2023)