Cargando…
Role of non-thermal electrons in ultrafast spin dynamics of ferromagnetic multilayer
Understanding of ultrafast spin dynamics is crucial for future spintronic applications. In particular, the role of non-thermal electrons needs further investigation in order to gain a fundamental understanding of photoinduced demagnetization and remagnetization on a femtosecond time scale. We experi...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156415/ https://www.ncbi.nlm.nih.gov/pubmed/32286462 http://dx.doi.org/10.1038/s41598-020-63452-3 |
Sumario: | Understanding of ultrafast spin dynamics is crucial for future spintronic applications. In particular, the role of non-thermal electrons needs further investigation in order to gain a fundamental understanding of photoinduced demagnetization and remagnetization on a femtosecond time scale. We experimentally demonstrate that non-thermal electrons existing in the very early phase of the photoinduced demagnetization process play a key role in governing the overall ultrafast spin dynamics behavior. We simultaneously measured the time-resolved reflectivity (TR-R) and the magneto-optical Kerr effect (TR-MOKE) for a Co/Pt multilayer film. By using an extended three-temperature model (E3TM), the quantitative analysis, including non-thermal electron energy transfer into the subsystem (thermal electron, lattice, and spin), reveals that energy flow from non-thermal electrons plays a decisive role in determining the type I and II photoinduced spin dynamics behavior. Our finding proposes a new mechanism for understanding ultrafast remagnetization dynamics. |
---|