Cargando…
Minimally altering a critical kinase for low-phytate maize
Nutritional security is of vital importance for combating malnutrition and catering to increasing energy demands. Phytic acid is considered an anti-nutrient, which sequesters important metal ions, limiting their bioavailability. The lpa mutants of maize contain reduced phytate, thus increase its nut...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156439/ https://www.ncbi.nlm.nih.gov/pubmed/32286385 http://dx.doi.org/10.1038/s41598-020-63016-5 |
Sumario: | Nutritional security is of vital importance for combating malnutrition and catering to increasing energy demands. Phytic acid is considered an anti-nutrient, which sequesters important metal ions, limiting their bioavailability. The lpa mutants of maize contain reduced phytate, thus increase its nutritive value. But low phytate is accompanied by negative pleiotropic effects. This article discusses the importance of lpa2 gene amongst available options, for precise DNA editing to simultaneously improve nutrition and avoid pleiotropic effects. |
---|