Cargando…
Socially engaged calves are more likely to be colonised by VTEC O157:H7 than individuals showing signs of poor welfare
In cattle herds, the transmission and persistence of VTEC O157:H7 (a serotype of verotoxin-producing Escherichia coli – known for its life threatening complications in humans) is dependent on a small proportion of cattle who become colonised and shed high numbers of the bacteria. Reducing the propor...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156447/ https://www.ncbi.nlm.nih.gov/pubmed/32286399 http://dx.doi.org/10.1038/s41598-020-63186-2 |
Sumario: | In cattle herds, the transmission and persistence of VTEC O157:H7 (a serotype of verotoxin-producing Escherichia coli – known for its life threatening complications in humans) is dependent on a small proportion of cattle who become colonised and shed high numbers of the bacteria. Reducing the proportion of these animals is considered key for decreasing the prevalence of VTEC O157:H7. In this study, observations of calf behaviour and animal-based welfare indicators were used to explore individual risk factors and underlying drivers of colonisation in Swedish dairy calves. Interdependencies between variables led to three different approaches being used to visualize and explore the associations. Combining the results of all methods revealed similar patterns and suggest that healthy animals, actively grooming and interacting with others calves in the group have a higher risk of colonisation than small dairy calves in poor condition (diarrhoea, poor ruminal fill, poor body condition score and nasal discharge). This lends no support to the hypothesis that reduced welfare is a risk factor for VTEC O157:H7, but implies that individual differences in calf behaviour affect oral exposure to the bacteria so driving the risk of colonisation. This new finding has important implications for understanding of VTEC O157:H7 transmission within farms. |
---|