Cargando…
Genome-wide unique insertion sequences among five Brucella species and demonstration of differential identification of Brucella by multiplex PCR assay
Brucellosis is a neglected zoonotic disease caused by alpha proteobacterial genus Brucella comprising of facultative intracellular pathogenic species that can infect both animals and humans. In this study, we aimed to identify genome-wide unique insertion sequence (IS) elements among Brucella abortu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156498/ https://www.ncbi.nlm.nih.gov/pubmed/32286356 http://dx.doi.org/10.1038/s41598-020-62472-3 |
Sumario: | Brucellosis is a neglected zoonotic disease caused by alpha proteobacterial genus Brucella comprising of facultative intracellular pathogenic species that can infect both animals and humans. In this study, we aimed to identify genome-wide unique insertion sequence (IS) elements among Brucella abortus, B. melitensis, B. ovis, B. suis and B. canis for use in species differentiation by conducting an intensive in silico-based comparative genomic analysis. As a result, 25, 27, 37, 86 and 3 unique ISs were identified respectively and they had a striking pattern of distribution among them. To explain, a particular IS would be present in four species with 100% identity whereas completely absent in the fifth species. However, flanking regions of that IS element would be highly identical and conserved in all five species. Species-specific primers designed on these flanking conserved regions resulted in two different amplicons grouping the species into two: one that possesses IS and the other that lacks it. Seeking for species-specific amplicon size for particular species was sufficient to identify it irrespective of biovar. A multiplex PCR developed using these primers resulted in successful differentiation of the five species irrespective of biovars with significant specificity and sensitivity when examined on clinical samples. |
---|