Cargando…
Resolving challenges in deep learning-based analyses of histopathological images using explanation methods
Deep learning has recently gained popularity in digital pathology due to its high prediction quality. However, the medical domain requires explanation and insight for a better understanding beyond standard quantitative performance evaluation. Recently, many explanation methods have emerged. This wor...
Autores principales: | Hägele, Miriam, Seegerer, Philipp, Lapuschkin, Sebastian, Bockmayr, Michael, Samek, Wojciech, Klauschen, Frederick, Müller, Klaus-Robert, Binder, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156509/ https://www.ncbi.nlm.nih.gov/pubmed/32286358 http://dx.doi.org/10.1038/s41598-020-62724-2 |
Ejemplares similares
-
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
por: Bach, Sebastian, et al.
Publicado: (2015) -
Explaining the unique nature of individual gait patterns with deep learning
por: Horst, Fabian, et al.
Publicado: (2019) -
Unmasking Clever Hans predictors and assessing what machines really learn
por: Lapuschkin, Sebastian, et al.
Publicado: (2019) -
New definitions of human lymphoid and follicular cell entities in lymphatic tissue by machine learning
por: Wagner, Patrick, et al.
Publicado: (2022) -
Patient-level proteomic network prediction by explainable artificial intelligence
por: Keyl, Philipp, et al.
Publicado: (2022)