Cargando…

SRHiC: A Deep Learning Model to Enhance the Resolution of Hi-C Data

Hi-C data is important for studying chromatin three-dimensional structure. However, the resolution of most existing Hi-C data is generally coarse due to sequencing cost. Therefore, it will be helpful if we can predict high-resolution Hi-C data from low-coverage sequencing data. Here we developed a n...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zhilan, Dai, Zhiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156553/
https://www.ncbi.nlm.nih.gov/pubmed/32322265
http://dx.doi.org/10.3389/fgene.2020.00353
Descripción
Sumario:Hi-C data is important for studying chromatin three-dimensional structure. However, the resolution of most existing Hi-C data is generally coarse due to sequencing cost. Therefore, it will be helpful if we can predict high-resolution Hi-C data from low-coverage sequencing data. Here we developed a novel and simple computational method based on deep learning named super-resolution Hi-C (SRHiC) to enhance the resolution of Hi-C data. We verified SRHiC on Hi-C data in human cell line. We also evaluated the generalization power of SRHiC by enhancing Hi-C data resolution in other human and mouse cell types. Results showed that SRHiC outperforms the state-of-the-art methods in accuracy of prediction.