Cargando…
SRHiC: A Deep Learning Model to Enhance the Resolution of Hi-C Data
Hi-C data is important for studying chromatin three-dimensional structure. However, the resolution of most existing Hi-C data is generally coarse due to sequencing cost. Therefore, it will be helpful if we can predict high-resolution Hi-C data from low-coverage sequencing data. Here we developed a n...
Autores principales: | Li, Zhilan, Dai, Zhiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156553/ https://www.ncbi.nlm.nih.gov/pubmed/32322265 http://dx.doi.org/10.3389/fgene.2020.00353 |
Ejemplares similares
-
DeepHiC: A generative adversarial network for enhancing Hi-C data resolution
por: Hong, Hao, et al.
Publicado: (2020) -
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
por: Zhang, Yan, et al.
Publicado: (2018) -
HiCeekR: A Novel Shiny App for Hi-C Data Analysis
por: Di Filippo, Lucio, et al.
Publicado: (2019) -
HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data
por: Liu, Tong, et al.
Publicado: (2019) -
Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions
por: Schoenfelder, Stefan, et al.
Publicado: (2018)