Cargando…

Microbiotyping the Sinonasal Microbiome

This study offers a novel description of the sinonasal microbiome, through an unsupervised machine learning approach combining dimensionality reduction and clustering. We apply our method to the International Sinonasal Microbiome Study (ISMS) dataset of 410 sinus swab samples. We propose three main...

Descripción completa

Detalles Bibliográficos
Autores principales: Bassiouni, Ahmed, Paramasivan, Sathish, Shiffer, Arron, Dillon, Matthew R., Cope, Emily K., Cooksley, Clare, Ramezanpour, Mahnaz, Moraitis, Sophia, Ali, Mohammad Javed, Bleier, Benjamin S., Callejas, Claudio, Cornet, Marjolein E., Douglas, Richard G., Dutra, Daniel, Georgalas, Christos, Harvey, Richard J., Hwang, Peter H., Luong, Amber U., Schlosser, Rodney J., Tantilipikorn, Pongsakorn, Tewfik, Marc A., Vreugde, Sarah, Wormald, Peter-John, Caporaso, J. Gregory, Psaltis, Alkis J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156599/
https://www.ncbi.nlm.nih.gov/pubmed/32322561
http://dx.doi.org/10.3389/fcimb.2020.00137
_version_ 1783522243960111104
author Bassiouni, Ahmed
Paramasivan, Sathish
Shiffer, Arron
Dillon, Matthew R.
Cope, Emily K.
Cooksley, Clare
Ramezanpour, Mahnaz
Moraitis, Sophia
Ali, Mohammad Javed
Bleier, Benjamin S.
Callejas, Claudio
Cornet, Marjolein E.
Douglas, Richard G.
Dutra, Daniel
Georgalas, Christos
Harvey, Richard J.
Hwang, Peter H.
Luong, Amber U.
Schlosser, Rodney J.
Tantilipikorn, Pongsakorn
Tewfik, Marc A.
Vreugde, Sarah
Wormald, Peter-John
Caporaso, J. Gregory
Psaltis, Alkis J.
author_facet Bassiouni, Ahmed
Paramasivan, Sathish
Shiffer, Arron
Dillon, Matthew R.
Cope, Emily K.
Cooksley, Clare
Ramezanpour, Mahnaz
Moraitis, Sophia
Ali, Mohammad Javed
Bleier, Benjamin S.
Callejas, Claudio
Cornet, Marjolein E.
Douglas, Richard G.
Dutra, Daniel
Georgalas, Christos
Harvey, Richard J.
Hwang, Peter H.
Luong, Amber U.
Schlosser, Rodney J.
Tantilipikorn, Pongsakorn
Tewfik, Marc A.
Vreugde, Sarah
Wormald, Peter-John
Caporaso, J. Gregory
Psaltis, Alkis J.
author_sort Bassiouni, Ahmed
collection PubMed
description This study offers a novel description of the sinonasal microbiome, through an unsupervised machine learning approach combining dimensionality reduction and clustering. We apply our method to the International Sinonasal Microbiome Study (ISMS) dataset of 410 sinus swab samples. We propose three main sinonasal “microbiotypes” or “states”: the first is Corynebacterium-dominated, the second is Staphylococcus-dominated, and the third dominated by the other core genera of the sinonasal microbiome (Streptococcus, Haemophilus, Moraxella, and Pseudomonas). The prevalence of the three microbiotypes studied did not differ between healthy and diseased sinuses, but differences in their distribution were evident based on geography. We also describe a potential reciprocal relationship between Corynebacterium species and Staphylococcus aureus, suggesting that a certain microbial equilibrium between various players is reached in the sinuses. We validate our approach by applying it to a separate 16S rRNA gene sequence dataset of 97 sinus swabs from a different patient cohort. Sinonasal microbiotyping may prove useful in reducing the complexity of describing sinonasal microbiota. It may drive future studies aimed at modeling microbial interactions in the sinuses and in doing so may facilitate the development of a tailored patient-specific approach to the treatment of sinus disease in the future.
format Online
Article
Text
id pubmed-7156599
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-71565992020-04-22 Microbiotyping the Sinonasal Microbiome Bassiouni, Ahmed Paramasivan, Sathish Shiffer, Arron Dillon, Matthew R. Cope, Emily K. Cooksley, Clare Ramezanpour, Mahnaz Moraitis, Sophia Ali, Mohammad Javed Bleier, Benjamin S. Callejas, Claudio Cornet, Marjolein E. Douglas, Richard G. Dutra, Daniel Georgalas, Christos Harvey, Richard J. Hwang, Peter H. Luong, Amber U. Schlosser, Rodney J. Tantilipikorn, Pongsakorn Tewfik, Marc A. Vreugde, Sarah Wormald, Peter-John Caporaso, J. Gregory Psaltis, Alkis J. Front Cell Infect Microbiol Cellular and Infection Microbiology This study offers a novel description of the sinonasal microbiome, through an unsupervised machine learning approach combining dimensionality reduction and clustering. We apply our method to the International Sinonasal Microbiome Study (ISMS) dataset of 410 sinus swab samples. We propose three main sinonasal “microbiotypes” or “states”: the first is Corynebacterium-dominated, the second is Staphylococcus-dominated, and the third dominated by the other core genera of the sinonasal microbiome (Streptococcus, Haemophilus, Moraxella, and Pseudomonas). The prevalence of the three microbiotypes studied did not differ between healthy and diseased sinuses, but differences in their distribution were evident based on geography. We also describe a potential reciprocal relationship between Corynebacterium species and Staphylococcus aureus, suggesting that a certain microbial equilibrium between various players is reached in the sinuses. We validate our approach by applying it to a separate 16S rRNA gene sequence dataset of 97 sinus swabs from a different patient cohort. Sinonasal microbiotyping may prove useful in reducing the complexity of describing sinonasal microbiota. It may drive future studies aimed at modeling microbial interactions in the sinuses and in doing so may facilitate the development of a tailored patient-specific approach to the treatment of sinus disease in the future. Frontiers Media S.A. 2020-04-08 /pmc/articles/PMC7156599/ /pubmed/32322561 http://dx.doi.org/10.3389/fcimb.2020.00137 Text en Copyright © 2020 Bassiouni, Paramasivan, Shiffer, Dillon, Cope, Cooksley, Ramezanpour, Moraitis, Ali, Bleier, Callejas, Cornet, Douglas, Dutra, Georgalas, Harvey, Hwang, Luong, Schlosser, Tantilipikorn, Tewfik, Vreugde, Wormald, Caporaso and Psaltis. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cellular and Infection Microbiology
Bassiouni, Ahmed
Paramasivan, Sathish
Shiffer, Arron
Dillon, Matthew R.
Cope, Emily K.
Cooksley, Clare
Ramezanpour, Mahnaz
Moraitis, Sophia
Ali, Mohammad Javed
Bleier, Benjamin S.
Callejas, Claudio
Cornet, Marjolein E.
Douglas, Richard G.
Dutra, Daniel
Georgalas, Christos
Harvey, Richard J.
Hwang, Peter H.
Luong, Amber U.
Schlosser, Rodney J.
Tantilipikorn, Pongsakorn
Tewfik, Marc A.
Vreugde, Sarah
Wormald, Peter-John
Caporaso, J. Gregory
Psaltis, Alkis J.
Microbiotyping the Sinonasal Microbiome
title Microbiotyping the Sinonasal Microbiome
title_full Microbiotyping the Sinonasal Microbiome
title_fullStr Microbiotyping the Sinonasal Microbiome
title_full_unstemmed Microbiotyping the Sinonasal Microbiome
title_short Microbiotyping the Sinonasal Microbiome
title_sort microbiotyping the sinonasal microbiome
topic Cellular and Infection Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156599/
https://www.ncbi.nlm.nih.gov/pubmed/32322561
http://dx.doi.org/10.3389/fcimb.2020.00137
work_keys_str_mv AT bassiouniahmed microbiotypingthesinonasalmicrobiome
AT paramasivansathish microbiotypingthesinonasalmicrobiome
AT shifferarron microbiotypingthesinonasalmicrobiome
AT dillonmatthewr microbiotypingthesinonasalmicrobiome
AT copeemilyk microbiotypingthesinonasalmicrobiome
AT cooksleyclare microbiotypingthesinonasalmicrobiome
AT ramezanpourmahnaz microbiotypingthesinonasalmicrobiome
AT moraitissophia microbiotypingthesinonasalmicrobiome
AT alimohammadjaved microbiotypingthesinonasalmicrobiome
AT bleierbenjamins microbiotypingthesinonasalmicrobiome
AT callejasclaudio microbiotypingthesinonasalmicrobiome
AT cornetmarjoleine microbiotypingthesinonasalmicrobiome
AT douglasrichardg microbiotypingthesinonasalmicrobiome
AT dutradaniel microbiotypingthesinonasalmicrobiome
AT georgalaschristos microbiotypingthesinonasalmicrobiome
AT harveyrichardj microbiotypingthesinonasalmicrobiome
AT hwangpeterh microbiotypingthesinonasalmicrobiome
AT luongamberu microbiotypingthesinonasalmicrobiome
AT schlosserrodneyj microbiotypingthesinonasalmicrobiome
AT tantilipikornpongsakorn microbiotypingthesinonasalmicrobiome
AT tewfikmarca microbiotypingthesinonasalmicrobiome
AT vreugdesarah microbiotypingthesinonasalmicrobiome
AT wormaldpeterjohn microbiotypingthesinonasalmicrobiome
AT caporasojgregory microbiotypingthesinonasalmicrobiome
AT psaltisalkisj microbiotypingthesinonasalmicrobiome