Cargando…

Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma

TFE3 Xp11.2 translocation renal cell carcinoma (TFE3-RCC) generally progresses more aggressively compared with other RCC subtypes, but it is challenging to diagnose TFE3-RCC by traditional visual inspection of pathological images. In this study, we collect hematoxylin and eosin- stained histopatholo...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Jun, Han, Zhi, Mehra, Rohit, Shao, Wei, Cheng, Michael, Feng, Qianjin, Ni, Dong, Huang, Kun, Cheng, Liang, Zhang, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156652/
https://www.ncbi.nlm.nih.gov/pubmed/32286325
http://dx.doi.org/10.1038/s41467-020-15671-5
_version_ 1783522256481157120
author Cheng, Jun
Han, Zhi
Mehra, Rohit
Shao, Wei
Cheng, Michael
Feng, Qianjin
Ni, Dong
Huang, Kun
Cheng, Liang
Zhang, Jie
author_facet Cheng, Jun
Han, Zhi
Mehra, Rohit
Shao, Wei
Cheng, Michael
Feng, Qianjin
Ni, Dong
Huang, Kun
Cheng, Liang
Zhang, Jie
author_sort Cheng, Jun
collection PubMed
description TFE3 Xp11.2 translocation renal cell carcinoma (TFE3-RCC) generally progresses more aggressively compared with other RCC subtypes, but it is challenging to diagnose TFE3-RCC by traditional visual inspection of pathological images. In this study, we collect hematoxylin and eosin- stained histopathology whole-slide images of 74 TFE3-RCC cases (the largest cohort to date) and 74 clear cell RCC cases (ccRCC, the most common RCC subtype) with matched gender and tumor grade. An automatic computational pipeline is implemented to extract image features. Comparative study identifies 52 image features with significant differences between TFE3-RCC and ccRCC. Machine learning models are built to distinguish TFE3-RCC from ccRCC. Tests of the classification models on an external validation set reveal high accuracy with areas under ROC curve ranging from 0.842 to 0.894. Our results suggest that automatically derived image features can capture subtle morphological differences between TFE3-RCC and ccRCC and contribute to a potential guideline for TFE3-RCC diagnosis.
format Online
Article
Text
id pubmed-7156652
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-71566522020-04-22 Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma Cheng, Jun Han, Zhi Mehra, Rohit Shao, Wei Cheng, Michael Feng, Qianjin Ni, Dong Huang, Kun Cheng, Liang Zhang, Jie Nat Commun Article TFE3 Xp11.2 translocation renal cell carcinoma (TFE3-RCC) generally progresses more aggressively compared with other RCC subtypes, but it is challenging to diagnose TFE3-RCC by traditional visual inspection of pathological images. In this study, we collect hematoxylin and eosin- stained histopathology whole-slide images of 74 TFE3-RCC cases (the largest cohort to date) and 74 clear cell RCC cases (ccRCC, the most common RCC subtype) with matched gender and tumor grade. An automatic computational pipeline is implemented to extract image features. Comparative study identifies 52 image features with significant differences between TFE3-RCC and ccRCC. Machine learning models are built to distinguish TFE3-RCC from ccRCC. Tests of the classification models on an external validation set reveal high accuracy with areas under ROC curve ranging from 0.842 to 0.894. Our results suggest that automatically derived image features can capture subtle morphological differences between TFE3-RCC and ccRCC and contribute to a potential guideline for TFE3-RCC diagnosis. Nature Publishing Group UK 2020-04-14 /pmc/articles/PMC7156652/ /pubmed/32286325 http://dx.doi.org/10.1038/s41467-020-15671-5 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Cheng, Jun
Han, Zhi
Mehra, Rohit
Shao, Wei
Cheng, Michael
Feng, Qianjin
Ni, Dong
Huang, Kun
Cheng, Liang
Zhang, Jie
Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma
title Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma
title_full Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma
title_fullStr Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma
title_full_unstemmed Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma
title_short Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma
title_sort computational analysis of pathological images enables a better diagnosis of tfe3 xp11.2 translocation renal cell carcinoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156652/
https://www.ncbi.nlm.nih.gov/pubmed/32286325
http://dx.doi.org/10.1038/s41467-020-15671-5
work_keys_str_mv AT chengjun computationalanalysisofpathologicalimagesenablesabetterdiagnosisoftfe3xp112translocationrenalcellcarcinoma
AT hanzhi computationalanalysisofpathologicalimagesenablesabetterdiagnosisoftfe3xp112translocationrenalcellcarcinoma
AT mehrarohit computationalanalysisofpathologicalimagesenablesabetterdiagnosisoftfe3xp112translocationrenalcellcarcinoma
AT shaowei computationalanalysisofpathologicalimagesenablesabetterdiagnosisoftfe3xp112translocationrenalcellcarcinoma
AT chengmichael computationalanalysisofpathologicalimagesenablesabetterdiagnosisoftfe3xp112translocationrenalcellcarcinoma
AT fengqianjin computationalanalysisofpathologicalimagesenablesabetterdiagnosisoftfe3xp112translocationrenalcellcarcinoma
AT nidong computationalanalysisofpathologicalimagesenablesabetterdiagnosisoftfe3xp112translocationrenalcellcarcinoma
AT huangkun computationalanalysisofpathologicalimagesenablesabetterdiagnosisoftfe3xp112translocationrenalcellcarcinoma
AT chengliang computationalanalysisofpathologicalimagesenablesabetterdiagnosisoftfe3xp112translocationrenalcellcarcinoma
AT zhangjie computationalanalysisofpathologicalimagesenablesabetterdiagnosisoftfe3xp112translocationrenalcellcarcinoma