Cargando…

Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes

Simultaneous deep brain stimulation (DBS) and functional magnetic resonance imaging (fMRI) constitutes a powerful tool for elucidating brain functional connectivity, and exploring neuromodulatory mechanisms of DBS therapies. Previous DBS-fMRI studies could not provide full activation pattern maps du...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Siyuan, Li, Gen, Tong, Chuanjun, Chen, Wenjing, Wang, Puxin, Dai, Jiankun, Fu, Xuefeng, Xu, Zheng, Liu, Xiaojun, Lu, Linlin, Liang, Zhifeng, Duan, Xiaojie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156737/
https://www.ncbi.nlm.nih.gov/pubmed/32286290
http://dx.doi.org/10.1038/s41467-020-15570-9
Descripción
Sumario:Simultaneous deep brain stimulation (DBS) and functional magnetic resonance imaging (fMRI) constitutes a powerful tool for elucidating brain functional connectivity, and exploring neuromodulatory mechanisms of DBS therapies. Previous DBS-fMRI studies could not provide full activation pattern maps due to poor MRI compatibility of the DBS electrodes, which caused obstruction of large brain areas on MRI scans. Here, we fabricate graphene fiber (GF) electrodes with high charge-injection-capacity and little-to-no MRI artifact at 9.4T. DBS-fMRI with GF electrodes at the subthalamic nucleus (STN) in Parkinsonian rats reveal robust blood-oxygenation-level-dependent responses along the basal ganglia-thalamocortical network in a frequency-dependent manner, with responses from some regions not previously detectable. This full map indicates that STN-DBS modulates both motor and non-motor pathways, possibly through orthodromic and antidromic signal propagation. With the capability for full, unbiased activation pattern mapping, DBS-fMRI using GF electrodes can provide important insights into DBS therapeutic mechanisms in various neurological disorders.