Cargando…
Deep Learning Predicts Total Knee Replacement from Magnetic Resonance Images
Knee Osteoarthritis (OA) is a common musculoskeletal disorder in the United States. When diagnosed at early stages, lifestyle interventions such as exercise and weight loss can slow OA progression, but at later stages, only an invasive option is available: total knee replacement (TKR). Though a gene...
Autores principales: | Tolpadi, Aniket A., Lee, Jinhee J., Pedoia, Valentina, Majumdar, Sharmila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156761/ https://www.ncbi.nlm.nih.gov/pubmed/32286452 http://dx.doi.org/10.1038/s41598-020-63395-9 |
Ejemplares similares
-
Synthetic Inflammation Imaging with PatchGAN Deep Learning Networks
por: Tolpadi, Aniket A., et al.
Publicado: (2023) -
Region of interest-specific loss functions improve T(2) quantification with ultrafast T(2) mapping MRI sequences in knee, hip and lumbar spine
por: Tolpadi, Aniket A., et al.
Publicado: (2022) -
Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis
por: Namiri, Nikan K., et al.
Publicado: (2021) -
Comparing bone shape models from deep learning processing of magnetic resonance imaging to computed tomography-based models
por: Wong, Victoria, et al.
Publicado: (2023) -
Uncovering associations between data-driven learned qMRI biomarkers and chronic pain
por: Morales, Alejandro G., et al.
Publicado: (2021)