Cargando…
Analyzing the Quality and Challenges of Uncertainty Estimations for Brain Tumor Segmentation
Automatic segmentation of brain tumors has the potential to enable volumetric measures and high-throughput analysis in the clinical setting. Reaching this potential seems almost achieved, considering the steady increase in segmentation accuracy. However, despite segmentation accuracy, the current me...
Autores principales: | Jungo, Alain, Balsiger, Fabian, Reyes, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156850/ https://www.ncbi.nlm.nih.gov/pubmed/32322186 http://dx.doi.org/10.3389/fnins.2020.00282 |
Ejemplares similares
-
Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation
por: Wang, Guotai, et al.
Publicado: (2019) -
Demystifying Brain Tumor Segmentation Networks: Interpretability and Uncertainty Analysis
por: Natekar, Parth, et al.
Publicado: (2020) -
Corrigendum: Demystifying Brain Tumor Segmentation Networks: Interpretability and Uncertainty Analysis
por: Natekar, Parth, et al.
Publicado: (2021) -
Post-operative glioblastoma multiforme segmentation with uncertainty estimation
por: Holtzman Gazit, Michal, et al.
Publicado: (2022) -
Divide and Conquer: Stratifying Training Data by Tumor Grade Improves Deep Learning-Based Brain Tumor Segmentation
por: Rebsamen, Michael, et al.
Publicado: (2019)