Cargando…
Recurrent cryptogenic stroke: A potential role for an artificial intelligence–enabled electrocardiogram?
Autores principales: | Kashou, Anthony H., Rabinstein, Alejandro A., Attia, Itzhak Zachi, Asirvatham, Samuel J., Gersh, Bernard J., Friedman, Paul A., Noseworthy, Peter A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156980/ https://www.ncbi.nlm.nih.gov/pubmed/32322497 http://dx.doi.org/10.1016/j.hrcr.2019.12.013 |
Ejemplares similares
-
A comprehensive artificial intelligence–enabled electrocardiogram interpretation program
por: Kashou, Anthony H., et al.
Publicado: (2020) -
Correlation between artificial intelligence-enabled electrocardiogram and echocardiographic features in aortic stenosis
por: Ito, Saki, et al.
Publicado: (2023) -
An artificial intelligence–enabled ECG algorithm for comprehensive ECG interpretation: Can it pass the ‘Turing test’?
por: Kashou, Anthony H., et al.
Publicado: (2021) -
Diagnosis and treatment of new heart failure with reduced ejection fraction by the artificial intelligence–enhanced electrocardiogram
por: Harmon, David M., et al.
Publicado: (2021) -
Clinical trial design data for electrocardiogram artificial intelligence-guided screening for low ejection fraction (EAGLE)
por: Yao, Xiaoxi, et al.
Publicado: (2019)