Cargando…
Sparse multiple co-Inertia analysis with application to integrative analysis of multi -Omics data
BACKGROUND: Multiple co-inertia analysis (mCIA) is a multivariate analysis method that can assess relationships and trends in multiple datasets. Recently it has been used for integrative analysis of multiple high-dimensional -omics datasets. However, its estimated loading vectors are non-sparse, whi...
Autores principales: | Min, Eun Jeong, Long, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7157996/ https://www.ncbi.nlm.nih.gov/pubmed/32293260 http://dx.doi.org/10.1186/s12859-020-3455-4 |
Ejemplares similares
-
Sparse reduced-rank regression for integrating omics data
por: Hilafu, Haileab, et al.
Publicado: (2020) -
Handling missing rows in multi-omics data integration: multiple imputation in multiple factor analysis framework
por: Voillet, Valentin, et al.
Publicado: (2016) -
Incorporating biological information in sparse principal component analysis with application to genomic data
por: Li, Ziyi, et al.
Publicado: (2017) -
PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data
por: Lemsara, Amina, et al.
Publicado: (2020) -
An integrative U method for joint analysis of multi-level omic data
por: Geng, Pei, et al.
Publicado: (2019)