Cargando…
Early dynamics of transmission and control of COVID-19: a mathematical modelling study
BACKGROUND: An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to 95 333 confirmed cases as of March 5, 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential fo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science ;, The Lancet Pub. Group
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158569/ https://www.ncbi.nlm.nih.gov/pubmed/32171059 http://dx.doi.org/10.1016/S1473-3099(20)30144-4 |
_version_ | 1783522529935097856 |
---|---|
author | Kucharski, Adam J Russell, Timothy W Diamond, Charlie Liu, Yang Edmunds, John Funk, Sebastian Eggo, Rosalind M |
author_facet | Kucharski, Adam J Russell, Timothy W Diamond, Charlie Liu, Yang Edmunds, John Funk, Sebastian Eggo, Rosalind M |
author_sort | Kucharski, Adam J |
collection | PubMed |
description | BACKGROUND: An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to 95 333 confirmed cases as of March 5, 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Combining a mathematical model of severe SARS-CoV-2 transmission with four datasets from within and outside Wuhan, we estimated how transmission in Wuhan varied between December, 2019, and February, 2020. We used these estimates to assess the potential for sustained human-to-human transmission to occur in locations outside Wuhan if cases were introduced. METHODS: We combined a stochastic transmission model with data on cases of coronavirus disease 2019 (COVID-19) in Wuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January, 2020, and February, 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. To estimate the early dynamics of transmission in Wuhan, we fitted a stochastic transmission dynamic model to multiple publicly available datasets on cases in Wuhan and internationally exported cases from Wuhan. The four datasets we fitted to were: daily number of new internationally exported cases (or lack thereof), by date of onset, as of Jan 26, 2020; daily number of new cases in Wuhan with no market exposure, by date of onset, between Dec 1, 2019, and Jan 1, 2020; daily number of new cases in China, by date of onset, between Dec 29, 2019, and Jan 23, 2020; and proportion of infected passengers on evacuation flights between Jan 29, 2020, and Feb 4, 2020. We used an additional two datasets for comparison with model outputs: daily number of new exported cases from Wuhan (or lack thereof) in countries with high connectivity to Wuhan (ie, top 20 most at-risk countries), by date of confirmation, as of Feb 10, 2020; and data on new confirmed cases reported in Wuhan between Jan 16, 2020, and Feb 11, 2020. FINDINGS: We estimated that the median daily reproduction number (R(t)) in Wuhan declined from 2·35 (95% CI 1·15–4·77) 1 week before travel restrictions were introduced on Jan 23, 2020, to 1·05 (0·41–2·39) 1 week after. Based on our estimates of R(t), assuming SARS-like variation, we calculated that in locations with similar transmission potential to Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population. INTERPRETATION: Our results show that COVID-19 transmission probably declined in Wuhan during late January, 2020, coinciding with the introduction of travel control measures. As more cases arrive in international locations with similar transmission potential to Wuhan before these control measures, it is likely many chains of transmission will fail to establish initially, but might lead to new outbreaks eventually. FUNDING: Wellcome Trust, Health Data Research UK, Bill & Melinda Gates Foundation, and National Institute for Health Research. |
format | Online Article Text |
id | pubmed-7158569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier Science ;, The Lancet Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-71585692020-04-15 Early dynamics of transmission and control of COVID-19: a mathematical modelling study Kucharski, Adam J Russell, Timothy W Diamond, Charlie Liu, Yang Edmunds, John Funk, Sebastian Eggo, Rosalind M Lancet Infect Dis Article BACKGROUND: An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to 95 333 confirmed cases as of March 5, 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Combining a mathematical model of severe SARS-CoV-2 transmission with four datasets from within and outside Wuhan, we estimated how transmission in Wuhan varied between December, 2019, and February, 2020. We used these estimates to assess the potential for sustained human-to-human transmission to occur in locations outside Wuhan if cases were introduced. METHODS: We combined a stochastic transmission model with data on cases of coronavirus disease 2019 (COVID-19) in Wuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January, 2020, and February, 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. To estimate the early dynamics of transmission in Wuhan, we fitted a stochastic transmission dynamic model to multiple publicly available datasets on cases in Wuhan and internationally exported cases from Wuhan. The four datasets we fitted to were: daily number of new internationally exported cases (or lack thereof), by date of onset, as of Jan 26, 2020; daily number of new cases in Wuhan with no market exposure, by date of onset, between Dec 1, 2019, and Jan 1, 2020; daily number of new cases in China, by date of onset, between Dec 29, 2019, and Jan 23, 2020; and proportion of infected passengers on evacuation flights between Jan 29, 2020, and Feb 4, 2020. We used an additional two datasets for comparison with model outputs: daily number of new exported cases from Wuhan (or lack thereof) in countries with high connectivity to Wuhan (ie, top 20 most at-risk countries), by date of confirmation, as of Feb 10, 2020; and data on new confirmed cases reported in Wuhan between Jan 16, 2020, and Feb 11, 2020. FINDINGS: We estimated that the median daily reproduction number (R(t)) in Wuhan declined from 2·35 (95% CI 1·15–4·77) 1 week before travel restrictions were introduced on Jan 23, 2020, to 1·05 (0·41–2·39) 1 week after. Based on our estimates of R(t), assuming SARS-like variation, we calculated that in locations with similar transmission potential to Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population. INTERPRETATION: Our results show that COVID-19 transmission probably declined in Wuhan during late January, 2020, coinciding with the introduction of travel control measures. As more cases arrive in international locations with similar transmission potential to Wuhan before these control measures, it is likely many chains of transmission will fail to establish initially, but might lead to new outbreaks eventually. FUNDING: Wellcome Trust, Health Data Research UK, Bill & Melinda Gates Foundation, and National Institute for Health Research. Elsevier Science ;, The Lancet Pub. Group 2020-05 /pmc/articles/PMC7158569/ /pubmed/32171059 http://dx.doi.org/10.1016/S1473-3099(20)30144-4 Text en © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kucharski, Adam J Russell, Timothy W Diamond, Charlie Liu, Yang Edmunds, John Funk, Sebastian Eggo, Rosalind M Early dynamics of transmission and control of COVID-19: a mathematical modelling study |
title | Early dynamics of transmission and control of COVID-19: a mathematical modelling study |
title_full | Early dynamics of transmission and control of COVID-19: a mathematical modelling study |
title_fullStr | Early dynamics of transmission and control of COVID-19: a mathematical modelling study |
title_full_unstemmed | Early dynamics of transmission and control of COVID-19: a mathematical modelling study |
title_short | Early dynamics of transmission and control of COVID-19: a mathematical modelling study |
title_sort | early dynamics of transmission and control of covid-19: a mathematical modelling study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158569/ https://www.ncbi.nlm.nih.gov/pubmed/32171059 http://dx.doi.org/10.1016/S1473-3099(20)30144-4 |
work_keys_str_mv | AT kucharskiadamj earlydynamicsoftransmissionandcontrolofcovid19amathematicalmodellingstudy AT russelltimothyw earlydynamicsoftransmissionandcontrolofcovid19amathematicalmodellingstudy AT diamondcharlie earlydynamicsoftransmissionandcontrolofcovid19amathematicalmodellingstudy AT liuyang earlydynamicsoftransmissionandcontrolofcovid19amathematicalmodellingstudy AT edmundsjohn earlydynamicsoftransmissionandcontrolofcovid19amathematicalmodellingstudy AT funksebastian earlydynamicsoftransmissionandcontrolofcovid19amathematicalmodellingstudy AT eggorosalindm earlydynamicsoftransmissionandcontrolofcovid19amathematicalmodellingstudy AT earlydynamicsoftransmissionandcontrolofcovid19amathematicalmodellingstudy |