Cargando…

Ameliorating process parameters for zeaxanthin yield in Arthrobacter gandavensis MTCC 25325

The present study aims to escalate the production of prophylactic agent zeaxanthin using a screened potential bacterial isolate. For this purpose, a freshwater bacterium capable of producing zeaxanthin was isolated from Bor Talav, Bhavnagar. The 16S rRNA sequence confirmed the isolate as Arthrobacte...

Descripción completa

Detalles Bibliográficos
Autores principales: Ram, Shristi, Tirkey, Sushma Rani, Kumar, Madhava Anil, Mishra, Sandhya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158978/
https://www.ncbi.nlm.nih.gov/pubmed/32297021
http://dx.doi.org/10.1186/s13568-020-01008-4
Descripción
Sumario:The present study aims to escalate the production of prophylactic agent zeaxanthin using a screened potential bacterial isolate. For this purpose, a freshwater bacterium capable of producing zeaxanthin was isolated from Bor Talav, Bhavnagar. The 16S rRNA sequence confirmed the isolate as Arthrobacter gandavensis. The bacterium was also submitted to Microbial Type Culture Collection, CSIR-Institute of Microbial Technology, Chandigarh, India, with the accession number MTCC 25325. The chemo-metric tools were employed to optimise the influencing factors such as pH, temperature, inoculum size, agitation speed, carbon source and harvest time on zeaxanthin yield. Thereafter, six parameters were narrowed down to three factors and were optimised using the central composite design (CCD) matrix. Maximum zeaxanthin (1.51 mg/g) was derived when A. gandavensis MTCC 25325 was grown under pH 6.0, 1.5% (w/v) glucose and 10% (v/v) inoculum size. A high regression coefficient (R(2)= 0.92) of the developed model indicated the accurateness of the tested parameters. To the best of our knowledge, this is the first report on tailoring the process parameters using chemo-metric optimisation for escalating the zeaxanthin production by A. gandavensis MTCC 25325. [Image: see text]