Cargando…
Predicting COVID-19 Incidence Through Analysis of Google Trends Data in Iran: Data Mining and Deep Learning Pilot Study
BACKGROUND: The recent global outbreak of coronavirus disease (COVID-19) is affecting many countries worldwide. Iran is one of the top 10 most affected countries. Search engines provide useful data from populations, and these data might be useful to analyze epidemics. Utilizing data mining methods o...
Autores principales: | Ayyoubzadeh, Seyed Mohammad, Ayyoubzadeh, Seyed Mehdi, Zahedi, Hoda, Ahmadi, Mahnaz, R Niakan Kalhori, Sharareh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159058/ https://www.ncbi.nlm.nih.gov/pubmed/32234709 http://dx.doi.org/10.2196/18828 |
Ejemplares similares
-
Prediction of COVID-19 Patients’ Survival by Deep Learning Approaches
por: Taheriyan, Moloud, et al.
Publicado: (2022) -
A Smartphone Remote Monitoring App to Follow Up Colorectal Cancer Survivors: Requirement Analysis
por: Ayyoubzadeh, Seyed Mohammad, et al.
Publicado: (2022) -
Persian mobile health applications for COVID-19: A use case-based study
por: Nouri, Rasool, et al.
Publicado: (2022) -
Digital Health Solutions to Control the COVID-19 Pandemic in Countries With High Disease Prevalence: Literature Review
por: R Niakan Kalhori, Sharareh, et al.
Publicado: (2021) -
Prognosis of COVID‐19 patients using lab tests: A data mining approach
por: Khounraz, Fariba, et al.
Publicado: (2023)