Cargando…
Predicting 30-day hospital readmissions using artificial neural networks with medical code embedding
Reducing unplanned readmissions is a major focus of current hospital quality efforts. In order to avoid unfair penalization, administrators and policymakers use prediction models to adjust for the performance of hospitals from healthcare claims data. Regression-based models are a commonly utilized m...
Autores principales: | Liu, Wenshuo, Stansbury, Cooper, Singh, Karandeep, Ryan, Andrew M., Sukul, Devraj, Mahmoudi, Elham, Waljee, Akbar, Zhu, Ji, Nallamothu, Brahmajee K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159221/ https://www.ncbi.nlm.nih.gov/pubmed/32294087 http://dx.doi.org/10.1371/journal.pone.0221606 |
Ejemplares similares
-
Patterns of Readmissions for Three Common Conditions Among Younger US Adults
por: Sukul, Devraj, et al.
Publicado: (2017) -
Use of electronic medical records in development and validation of risk prediction models of hospital readmission: systematic review
por: Mahmoudi, Elham, et al.
Publicado: (2020) -
PREDICTIVE MODEL OF 30-DAY HOSPITAL READMISSION FOR PATIENTS WITH ALZHEIMER’S DISEASE
por: Mahmoudi, Elham, et al.
Publicado: (2022) -
Performance of a Deep Learning Model vs Human Reviewers in Grading Endoscopic Disease Severity of Patients With Ulcerative Colitis
por: Stidham, Ryan W., et al.
Publicado: (2019) -
Predicting all-cause risk of 30-day hospital readmission using artificial neural networks
por: Jamei, Mehdi, et al.
Publicado: (2017)