Cargando…

Formation of 2D and 3D multi-tori mesostructures via crystallization-driven self-assembly

The fabrication of three-dimensional (3D) objects by polymer self-assembly in solution is extremely challenging. Here, multi-tori mesostructures were obtained from the crystallization-driven self-assembly of a coil-crystalline block copolymer (BCP) in mixed solvents. The formation of these structure...

Descripción completa

Detalles Bibliográficos
Autores principales: Guerin, Gerald, Cruz, Menandro, Yu, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159922/
https://www.ncbi.nlm.nih.gov/pubmed/32494620
http://dx.doi.org/10.1126/sciadv.aaz7301
Descripción
Sumario:The fabrication of three-dimensional (3D) objects by polymer self-assembly in solution is extremely challenging. Here, multi-tori mesostructures were obtained from the crystallization-driven self-assembly of a coil-crystalline block copolymer (BCP) in mixed solvents. The formation of these structures follows a multistep process. First, the BCP self-assembles into amorphous micrometer-large vesicles. Then, the BCP confined in these mesosized vesicles crystallizes. This second step leads to the formation of objects with shapes ranging from closed 3D multi-tori spherical shells to 2D toroid mesh monolayers, depending on the solvent mixture composition. This approach demonstrates how topological constraints induced by the specific interactions between coil-crystalline BCP and solvents can be used to prepare mesostructures of complex morphologies.