Cargando…
Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink
Lakes have a disproportionate effect on the global carbon (C) cycle relative to their area, mediating C transfer from land to atmosphere, and burying organic-C in their sediments. The magnitude and temporal variability of C burial is, however, poorly constrained, and the degree to which humans have...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159926/ https://www.ncbi.nlm.nih.gov/pubmed/32494589 http://dx.doi.org/10.1126/sciadv.aaw2145 |
Sumario: | Lakes have a disproportionate effect on the global carbon (C) cycle relative to their area, mediating C transfer from land to atmosphere, and burying organic-C in their sediments. The magnitude and temporal variability of C burial is, however, poorly constrained, and the degree to which humans have influenced lake C cycling through landscape alteration has not been systematically assessed. Here, we report global and biome specific trajectories of lake C sequestration based on 516 lakes and show that some lake C burial rates (i.e., those in tropical forest and grassland biomes) have quadrupled over the last 100 years. Global lake C-sequestration (~0.12 Pg year(−1)) has increased by ~72 Tg year(−1) since 1900, offsetting 20% of annual CO(2) freshwater emissions rising to ~30% if reservoirs are included and contributing to the residual continental C sink. Nutrient availability explains ~70% of the observed increase, while rising temperatures have a minimal effect. |
---|