Cargando…
Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis
OBJECTIVES: To propose a transfer learning (TL) radiomics model that efficiently combines the information from gray scale and elastogram ultrasound images for accurate liver fibrosis grading. METHODS: Totally 466 patients undergoing partial hepatectomy were enrolled, including 401 with chronic hepat...
Autores principales: | Xue, Li-Yun, Jiang, Zhuo-Yun, Fu, Tian-Tian, Wang, Qing-Min, Zhu, Yu-Li, Dai, Meng, Wang, Wen-Ping, Yu, Jin-Hua, Ding, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160214/ https://www.ncbi.nlm.nih.gov/pubmed/31965257 http://dx.doi.org/10.1007/s00330-019-06595-w |
Ejemplares similares
-
Radiomics nomogram for the prediction of 2019 novel coronavirus pneumonia caused by SARS-CoV-2
por: Fang, Xu, et al.
Publicado: (2020) -
Dynamic 3D radiomics analysis using artificial intelligence to assess the stage of COVID-19 on CT images
por: Cai, Shengping, et al.
Publicado: (2022) -
A PET/CT nomogram incorporating SUVmax and CT radiomics for preoperative nodal staging in non-small cell lung cancer
por: Xie, Yunming, et al.
Publicado: (2021) -
Quo vadis Radiomics? Bibliometric analysis of 10-year Radiomics journey
por: Volpe, Stefania, et al.
Publicado: (2023) -
Radiomics with 3-dimensional magnetic resonance fingerprinting: influence of dictionary design on repeatability and reproducibility of radiomic features
por: Fujita, Shohei, et al.
Publicado: (2022)