Cargando…

Identification and validation of mutation points associated with waxy phenotype in cassava

BACKGROUND: The granule-bound starch synthase I (GBSSI) enzyme is responsible for the synthesis of amylose, and therefore, its absence results in individuals with a waxy starch phenotype in various amylaceous crops. The validation of mutation points previously associated with the waxy starch phenoty...

Descripción completa

Detalles Bibliográficos
Autores principales: do Carmo, Cátia Dias, Sousa, Massaine Bandeira e, dos Santos Silva, Priscila Patrícia, Oliveira, Gilmara Alvarenga Fachardo, Ceballos, Hernán, de Oliveira, Eder Jorge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160975/
https://www.ncbi.nlm.nih.gov/pubmed/32293293
http://dx.doi.org/10.1186/s12870-020-02379-3
Descripción
Sumario:BACKGROUND: The granule-bound starch synthase I (GBSSI) enzyme is responsible for the synthesis of amylose, and therefore, its absence results in individuals with a waxy starch phenotype in various amylaceous crops. The validation of mutation points previously associated with the waxy starch phenotype in cassava, as well as the identification of alternative mutant alleles in the GBSSI gene, can allow the development of molecular-assisted selection to introgress the waxy starch mutation into cassava breeding populations. RESULTS: A waxy cassava allele has been identified previously, associated with several SNPs. A particular SNP (intron 11) was used to develop SNAP markers for screening heterozygote types in cassava germplasm. Although the molecular segregation corresponds to the expected segregation at 3:1 ratio (dominant gene for the presence of amylose), the homozygotes containing the SNP associated with the waxy mutation did not show waxy phenotypes. To identify more markers, we sequenced the GBSS gene from 89 genotypes, including some that were segregated from a cross with a line carrying the known waxy allele. As a result, 17 mutations in the GBSSI gene were identified, in which only the deletion in exon 6 (MeWxEx6-del-C) was correlated with the waxy phenotype. The evaluation of mutation points by discriminant analysis of principal component analysis (DAPC) also did not completely discriminate the waxy individuals. Therefore, we developed Kompetitive Allele Specific PCR (KASP) markers that allowed discrimination between WX and wx alleles. The results demonstrated the non-existence of heterozygous individuals of the MeWxEx6-del-C deletion in the analyzed germplasm. Therefore, the deletion MeWxEx6-del-C should not be used for assisted selection in genetic backgrounds different from the original source of waxy starch. Also, the alternative SNPs identified in this study were not associated with the waxy phenotype when compared to a panel of accessions with high genetic diversity. CONCLUSION: Although the GBSSI gene can exhibit several mutations in cassava, only the deletion in exon 6 (MeWxEx6-del-C) was correlated with the waxy phenotype in the original AM206–5 source.